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Stability and stabilization of Poisson jump linear

systems

Consider the PJLS:

ẋ(t) = Aθ(t)x(t) +Bθ(t)u(t)

x(t) ∈ Rn is the state

u(t) ∈ Rnu is the control input variable

θ (t) ∈N = {1,2, . . . ,N} is a switching signal
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Assumptions on the switching signal

The switching signal θ (t) is a stochastic process subject to
mode-dependent Poisson jumps.

Letting tk ,k ∈ {0,1,2, . . .}, t0 = 0, be the sequence of jump
times, the dwell-time τk = tk+1− tk is exponentially
distributed with parameter λθ(tk) > 0.

Pr{τk ≥∆}= exp(−λθ(tk)∆)

Note that E [τk ] = λ
−1
θ(tk).
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Comparison with Markov Jumps Linear Systems

In a MJLS, the switching signal θ (t) is a Markov chain with
transition rate matrix Λ.
Both the distribution of the dwell-time τk (exponential) and
the transition probability between modes are specified.

In a PJLS only the distribution of the dwell-time τk is specified
(exponential).

No information is assumed on the transition probabilities
between modes.
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PJLS as an uncertain positive MJLS

In a PJLS, θ (t) can be seen as an inhomogeneous Markov
process with uncertain transition rate matrix:

Λ(t) =


−λ1 ? · · · ?

? −λ2 · · · ?
...

...
. . .

...
? ? · · · −λN


A PJLS is an uncertain MJLS with Λ(t) ∈ co{Λ̄k}.

The vertices Λ̄k are obtained from all combinations of rows
having a single nonzero off-diagonal entry λi .

The number of vertices Λ̄k is N̄ = (N−1)N .
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Example of matrix vertices - N = 3

Λ̄1 =

−λ1 λ1 0
λ2 −λ2 0
λ3 0 −λ3

 , Λ̄2 =

−λ1 λ1 0
λ2 −λ2 0
0 λ3 −λ3


Λ̄3 =

−λ1 λ1 0
0 −λ2 λ2

λ3 0 −λ3

 , Λ̄4 =

−λ1 λ1 0
0 −λ2 λ2

0 λ3 −λ3


Λ̄5 =

−λ1 0 λ1

λ2 −λ2 0
λ3 0 −λ3

 , Λ̄6 =

−λ1 0 λ1

λ2 −λ2 0
0 λ3 −λ3


Λ̄7 =

−λ1 0 λ1

0 −λ2 λ2

λ3 0 −λ3

 , Λ̄8 =

−λ1 0 λ1

0 −λ2 λ2

0 λ3 −λ3


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Addressed problems

Mean square stability of a PJLS

State-feedback mean square stabilization of a PJLS
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Mean square stability (MS-stability)

Definition
The PJLS

ẋ(t) = Aθ(t)x(t)

is MS-stable if
lim
t→∞

E [x(t)>x(t)] = 0

for any x(0) and all admissible θ (t).

MS-stability is equivalent to second-moment stability, i.e.
asymptotic convergence to zero of any squared norm of x(t).
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Necessary and sufficient condition for M-stability

Theorem 1
MS-stability of the PJLS is equivalent to stability under
arbitrary switching of the deterministic system of order Nn2:

ξ̇ (t) = Φσ(t)ξ (t)

with

Φk = diag{Ai ⊕Ai}+ Λ̄>k ⊗ In2

σ(t) ∈ Σ = {1,2, . . . ,(N−1)N}
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Proof of Theorem 1

Let Si (t) = E [x(t)x(t)>Iσ(t)=i ]. Then

Ṡi (t) = AiSi +SiA
>
i +

N

∑
j=1

λji (t)Sj

Let ξ (t) = Vec{Si}, N̄ = (N−1)N , Λ(t) =
N̄

∑
k=1

Λ̄kαk(t).

ξ̇ (t) =

(
N̄

∑
k=1

αk(t)Φk

)
ξ (t), Φk = diag{Ai ⊕Ai}+ Λ̄>k ⊗ In2

Stability of this polytopic system is equivalent to stability
under arbitrary switching of the switching system

ξ̇ (t) = Φσ ξ (t), σ = {1,2, · · · , N̄}
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Sufficient conditions for MS-stability

Theorem 2
The PJLS is MS-stable if one of the following conditions is
satisfied:

(i) There exist Q� 0 such that

ΦkQ + QΦ>k ≺ 0, k ∈ Σ

(ii) There exist strictly positive definite matrices Pi ,
i ∈N , such that

A>i Pi + PiAi + λi (Pj −Pi )≺ 0, i , j ∈N , j 6= i

(iii) There exist strictly positive definite matrices
Si ∈ Rn

+, i ∈N , such that

AiRi + RiA
>
i −λiRi +

N

∑
j=1,j 6=i

λjRj ≺ 0, i ∈N
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Remarks on Theorem 2

The conditions (i) of Theorem 2 imply the existence of a
common quadratic Lyapunov function V (ξ ) = ξ ′Q−1ξ ,
for the deterministic system.

The conditions (ii) of Theorem 2 imply the existence of
the stochastic Lyapunov function V (x ,θ ) = x ′Pθx for the
stochastic system, or, equivalently the K - co-positive
common linear Lyapunov function V (ξ ) = p>ξ ,
p = colvec{Pi} for the deterministic system. Since

p′Φk
K
�0, it results V̇ (ξ ) < 0.

The conditions (iii) of Theorem 2 implies Φkr
K
�0, where

r = colvec{Ri} and hence stability under arbitrary

switching of system ξ̇ = Φσ(t))ξ .
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Relations via cone-invariance theory

r = colvec{Ri}, p = colvec{Pi}

Ψr
K
�0 −→ Φkr

K
�0

Ψr
K
�0 ←→ p>Ψ

K
�0 −→ p>Φk

K
�0

Ψr
K
�0 ←→ ΦkQ +QΦ>k ≺ 0

where Ψ
K
>Φk and

Q = diag{Q̄i ⊗ Q̄i}, Q̄i = P
−1/2
i

(
P

1/2
i RiP

1/2
i

)1/2
P
−1/2
i
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Numerical example - MS-stability

Consider the PJLS with N = 3, and

A1 =

[
−1 0
−1 0.1

]
, A2 =

[
0.1 −1
0 −2

]
, A3 =

[
−2 0.2
−1 −2

]
and λ1 = λ2 = 1, λ3 = free.

MS-stability is guaranteed for:

Theorem 2(i): λ3 ≤ 12.33

Theorem 2(ii): λ3 ≤ 12.43

Theorem 2(iii): λ3 ≤ 0.16

Necessary condition (stability of the vertices Φk ,k ∈ Σ):
λ3 ≤ 12.46
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Example

20 realizations of the squared 2-norm of the state with
x(0) = [0.5 0.5]′ and λ3 = 10 [λ3 = 20], illustrating
MS-stability [instability]. The switching signal θ (t) commutes
between modes 2 and 3, that corresponds to the worst
sub-MJLS composed of a pair of modes.
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Figure 1 : 20 realizations of the state squared 2-norm of the PJLS
of Example 1 with λ3 = 10 (left) and λ3 = 20 (right).

Figure 2 : 20 realizations of the state squared 2-norm of the PJLS
of Example 1 with λ3 = 20.
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Scalar case

Remark 1: In the scalar case, stability of all modes
(Ai = ai < 0,∀i) implies MS-stability of the PJLS. Moreover,
the presence of two unstable (or marginally stable) modes
prevents MS stability. As a matter of fact, the sub-MJLS
composed by these two modes cannot be MS-stable. Then,
without loss of generality, we assume that there is only one
nonnegative ai , say au ≥ 0. It can be proven that the PJLS is
MS-stable if and only if

λu > au max
i 6=u

(2− λi

ai
)

The interpretation of this condition is that the average
dwell-time in the unstable mode must be sufficiently small.
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State-feedback MS-stabilization

Definition
The PJLS

ẋ(t) = Aθ(t)x(t) +Bθ(t)u(t)

is MS-stabilizable if there exists a feedback law

u(t) = Kθ(t)x(t)

such that the closed-loop system is MS-stable for all
admissible θ (t).
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Sufficient conditions for MS-stabilization

Theorem 3
If there exist strictly positive definite matrices Ri , and Wi ,
i ∈N , such that

AiRi +RiAi−λiRi +BiWi +W′
iB
′
i +

N

∑
j=1,j 6=i

λjRj ≺ 0, i ∈N

for all i , j ∈N with j 6= i , then the gain matrices Ki , i ∈N ,
defined by

Ki = WiR
−1
i

make the closed-loop system positive and MS-stable.
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Sufficient conditions for MS-stabilization

Theorem 4
If there exist a positive definite matrix Q = diag{Qi}, a matrix
W = diag{Wi} such that, ∀k ∈ Σ,

ΦkQ + QΦ>k + B̃W + W>B̃> ≺ 0

then, the gain matrices Ki = WiQ
−1
i , i ∈N make the

closed-loop system positive and M-stable.

B̃ = diag{B̃i}, B̃i = (Bi⊗ I )+(I×Bi )J , J : (x⊗u) = J(u⊗x)
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Conclusions

The class of linear systems subject to Poisson jumps
(PJLS) has been studied.

It has been shown that MS-stability of a PJLS is
equivalent to stability under arbitrary switching of a
higher order deterministic system.

Sufficient conditions for MS-stability and MS-stabilization
have been derived.

Possible extensions concern performance optimization of
input/output norms.
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Thanks for your attention!
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