Harmonic influence in social networks
Identification of influencers by message passing

Paolo Frasca

based on joint works with
F. Fagnani (Torino)
A. Ozdaglar (MIT)
W.S. Rossi (Twente)
L. Vassio (Torino)

2017 Workshop Roberto Tempo on Uncertain Dynamical Systems
Banyuls-Sur-Mer, France
July 2017
What is social influence?

What is the most influential node in a network?

Context-dependent question:
opinion dynamics // epidemic spread // cascading activation // resource competition // ...

What is social influence?

What is the most influential node in a network?

Context-dependent question:
opinion dynamics // epidemic spread // cascading activation // resource competition // ...

In this talk:
A leader competes against an adversary field to influence the opinions of the other individuals

Our approach: harmonic influence

Which leader location (node) maximizes the influence?

1. We define the harmonic influence of a node
2. We relate social and electrical networks
3. We derive a message-passing algorithm
4. We prove its convergence
5. We discuss a few simulations

Influence Maximization
Opinions in the social network

Each individual i has **opinion** $x_i(t) \in \mathbb{R}$ evolving with time

Opinions evolve through

- **social interactions** between individuals
- influence of an external field

Weighted graph $G = (I, E, C)$
- node set $I = \{f, 1, 2, \ldots, n\}$
- f is a special **field** node
- undirected edge set E
- **non-negative weight matrix** C
 such that $C_{ij}C_{ji} > 0 \iff \{i, j\} \in E$
Opinions dynamics in the social network

We introduce a leader against the field

\[x_f(t) = x_f(0) \quad \text{for all} \quad t \]

The leader \(\ell \) is also stubborn

\[x_\ell(t) = x_\ell(0) \quad \text{for all} \quad t \]

The remaining individuals do local averaging

\[x_i(t+1) = \sum_{j \neq i} Q_{ij} x_j(t) \]

where \(Q = D - I \)

\[D = \text{diag}(C) \]
Opinions dynamics in the social network

We introduce a leader against the field

- The field \mathbf{f} is stubborn

\[x_{\mathbf{f}}(t) = x_{\mathbf{f}}(0) \quad \text{for all } t \]

- The leader $\mathbf{\ell}$ is also stubborn

\[x_{\mathbf{\ell}}(t) = x_{\mathbf{\ell}}(0) \quad \text{for all } t \]
Opinions dynamics in the social network

We introduce a leader against the field

- The field f is stubborn
 \[x_f(t) = x_f(0) \quad \text{for all } t \]
- The leader ℓ is also stubborn
 \[x_\ell(t) = x_\ell(0) \quad \text{for all } t \]
- The remaining individuals do local averaging
 \[x_i(t+1) = \sum_{j \neq i} Q_{ij} x_j(t) \]

where $Q = D^{-1}C$

with diagonal matrix $D = \text{diag}(C\mathbf{1})$
Harmonic influence

Let Laplacian matrix \(L = D - C \)
Normalize opinions in \([0, 1]\)

Dirichlet problem

Equilibrium opinions solve Laplacian system with boundary conditions

\[
\begin{align*}
L \mathbf{x} &= \mathbf{0} \\
x_{\ell} &= 1 \\
x_f &= 0
\end{align*}
\]

The *Harmonic Influence of* \(\ell \) is \(H(\ell) := \mathbf{1}^T \mathbf{x} \)

(\(\mathbf{x} \) is said to be a harmonic function)

Computing \(H \) requires solving \(n \) linear systems, one for each possible leader
Computing the Harmonic Influence

Problem:
Find an algorithm that
- solves all n systems at the same time
- is distributed
Computing the Harmonic Influence

Problem:
Find an algorithm that

- solves all n systems at the same time
- is distributed

Solution:
Message-passing iterative algorithm that approximates H

- with provable convergence
- with insights on convergence speed and approximation error
Electrically-inspired Message-Passing Algorithm
Electrical analogy (assuming $C^\top = C$)

Equilibrium opinions \mathbf{x} are the potentials of an electrical network.

ℓ

\mathbf{f}
Electrical analogy (assuming $C^\top = C$)

Equilibrium opinions x are the potentials of an electrical network

- node f has potential 0
- node ℓ has potential 1
- conductances of value $C_{ij} = C_{ji}$ substitute each edge

Computation of $H(\ell)$ on trees:
1. compute the effective resistances
2. compute the current leaving ℓ
3. compute all potentials
4. sum up potentials to get $H(\ell)$
Electrical analogy (assuming $C^\top = C$)

Equilibrium opinions \mathbf{x} are the potentials of an electrical network

- node f has potential 0
- node ℓ has potential 1
- conductances $C_{ij} = C_{ji}$ substitute each edge

Computation of $H(\ell)$ on trees:

1. compute the effective resistances
2. compute the current leaving ℓ
3. compute all potentials
4. sum up potentials to get $H(\ell)$
Propagating of potentials: from leaves to root

Also $H(\ell)$ can be computed recursively, from the leaves to the root.
Also $H(\ell)$ can be computed recursively, from the leaves to the root.

Notation:

- $H_{i \rightarrow j}$: $H(i)$ on the graph without edge $\{i, j\}$
Also $H(\ell)$ can be computed recursively, from the leaves to the root

Notation:

- $H^{i \rightarrow j}$: $H(i)$ on the graph without edge $\{i, j\}$
- $W^{i \rightarrow j}$: potential of i if j is at potential 1
Propagation of potentials: from leaves to root

Also $H(\ell)$ can be computed recursively, from the leaves to the root

Notation:

- $H^{i\rightarrow j}$: $H(i)$ on the graph without edge $\{i, j\}$
- $W^{i\rightarrow j}$: potential of i if j is at potential 1
For simplicity, $C_{ij} = 1$ for all $\{i, j\} \in E$
Propagation of potentials: example

For simplicity, \(C_{ij} = 1 \) for all \(\{i, j\} \in E \)

\[
\begin{align*}
H_{k \rightarrow i} &= 1 \\
W_{k \rightarrow i} &= 1
\end{align*}
\]
Propagation of potentials: example

For simplicity, $C_{ij} = 1$ for all $\{i, j\} \in E$

$H^{k\rightarrow i} = 1 \quad W^{k\rightarrow i} = 1$
$H^{f\rightarrow i} = 0 \quad W^{f\rightarrow i} = 0$
Propagation of potentials: example

For simplicity, $C_{ij} = 1$ for all $\{i, j\} \in E$

$$
H_{k \to i} = 1 \quad W_{k \to i} = 1 \\
H_{f \to i} = 0 \quad W_{f \to i} = 0 \\
H_{i \to j} = 1 + W_{k \to i} H_{k \to i} + W_{f \to i} H_{f \to i}
$$
For simplicity, $C_{ij} = 1$ for all $\{i, j\} \in E$

$H^{k \rightarrow i} = 1 \quad W^{k \rightarrow i} = 1$

$H^{f \rightarrow i} = 0 \quad W^{f \rightarrow i} = 0$

$H^{i \rightarrow j} = 1 + W^{k \rightarrow i} H^{k \rightarrow i} + W^{f \rightarrow i} H^{f \rightarrow i}$

$W^{i \rightarrow j} = \frac{1}{1 + (1 - W^{k \rightarrow i}) + (1 - W^{f \rightarrow i})}$
Propagation of potentials: example

For simplicity, \(C_{ij} = 1 \) for all \(\{i, j\} \in E \)

\[
\begin{align*}
H^{k \rightarrow i} &= 1 \quad W^{k \rightarrow i} = 1 \\
H^{f \rightarrow i} &= 0 \quad W^{f \rightarrow i} = 0 \\
H^{i \rightarrow j} &= 1 + W^{k \rightarrow i} H^{k \rightarrow i} + W^{f \rightarrow i} H^{f \rightarrow i} \\
W^{i \rightarrow j} &= \frac{1}{1 + (1 - W^{k \rightarrow i}) + (1 - W^{f \rightarrow i})} \\
H^{j \rightarrow \ell} &= 1 + W^{i \rightarrow j} H^{i \rightarrow j} + W^{i' \rightarrow j} H^{i' \rightarrow j} \\
&= 1 + W^{i \rightarrow j} + W^{i' \rightarrow j} + W^{k \rightarrow j} + W^{f \rightarrow j} + W^{h \rightarrow j} + W^{h' \rightarrow j} \\
\text{because} \quad W^{k \rightarrow j} &= W^{k \rightarrow i} W^{i \rightarrow j}
\end{align*}
\]
For simplicity, $C_{ij} = 1$ for all $\{i, j\} \in E$

\[
H_{k \rightarrow i} = 1 \quad W_{k \rightarrow i} = 1
\]
\[
H_{f \rightarrow i} = 0 \quad W_{f \rightarrow i} = 0
\]
\[
H_{i \rightarrow j} = 1 + W_{k \rightarrow i} H_{k \rightarrow i} + W_{f \rightarrow i} H_{f \rightarrow i}
\]
\[
W_{i \rightarrow j} = \frac{1}{1 + (1 - W_{k \rightarrow i}) + (1 - W_{f \rightarrow i})}
\]
\[
H_{j \rightarrow \ell} = 1 + W_{i \rightarrow j} H_{i \rightarrow j} + W_{i' \rightarrow j} H_{i' \rightarrow j}
\]
\[
W_{j \rightarrow \ell} = \frac{1}{1 + (1 - W_{i \rightarrow j}) + (1 - W_{i' \rightarrow j})}
\]
For simplicity, $C_{ij} = 1$ for all $\{i, j\} \in E$

\[
\begin{align*}
H^{k \rightarrow i} &= 1 & W^{k \rightarrow i} &= 1 \\
H^{f \rightarrow i} &= 0 & W^{f \rightarrow i} &= 0 \\
H^{i \rightarrow j} &= 1 + W^{k \rightarrow i} H^{k \rightarrow i} + W^{f \rightarrow i} H^{f \rightarrow i} \\
W^{i \rightarrow j} &= \frac{1}{1 + (1 - W^{k \rightarrow i}) + (1 - W^{f \rightarrow i})} \\
H^{j \rightarrow \ell} &= 1 + W^{i \rightarrow j} H^{i \rightarrow j} + W^{i' \rightarrow j} H^{i' \rightarrow j} \\
W^{j \rightarrow \ell} &= \frac{1}{1 + (1 - W^{i \rightarrow j}) + (1 - W^{i' \rightarrow j})} \\
H(\ell) &= 1 + W^{j \rightarrow \ell} H^{j \rightarrow \ell}
\end{align*}
\]
Message Passing Algorithm

Generic graph $\mathcal{G} = (I, E, C)$ \hspace{1cm} C needs not be symmetric

Node i sends to neighbor j two messages:
- $W^{i \rightarrow j}(t)$: estimate of x_i if $\ell = j$
- $H^{i \rightarrow j}(t)$: estimate of $H(i)$ in the graph $\mathcal{G} \setminus \{i,j\}$

Message-Passing Algorithm

<table>
<thead>
<tr>
<th>boundary</th>
<th>$W^{i \rightarrow j}(t) = 0$, $H^{i \rightarrow j}(t) = 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>initialization</td>
<td>$W^{i \rightarrow j}(0) = 1$, $H^{i \rightarrow j}(0) = 1$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>update</th>
<th>$W^{i \rightarrow j}(t + 1) = \left[1 + \sum_{k \in N_i \setminus j} \frac{C_{ik}}{C_{ij}} (1 - W^{k \rightarrow i}(t))\right]^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$H^{i \rightarrow j}(t + 1) = 1 + \sum_{k \in N_i \setminus j} W^{k \rightarrow i}(t) H^{k \rightarrow i}(t)$</td>
</tr>
</tbody>
</table>

| estimate | $H_t(\ell) = 1 + \sum_{i \in N_\ell} W^{i \rightarrow \ell}(t) H^{i \rightarrow \ell}(t)$ |
Analysis of the MPA
Theorem

Let $G = (I, E, C)$ be any connected graph with symmetric C. Then, the Message Passing Algorithm converges.

Proof outline:

1. define an MPA-like dynamics on directed graphs M
2. define suitable message digraph M_G, that describes the topology of the dependences between messages
3. prove the convergence of the MPA-like dynamics induced on M_G:
 - when acyclic (by construction)
 - when strongly connected (more difficult)
 - in general (combining the sub-proofs)
Proof 1/3: MPA-like dynamics

- Digraph $\mathcal{M} = (V, \Phi)$, its adjacency matrix $M \in \{0, 1\}^{V \times V}$
- Vectors $\mathbf{r}, \mathbf{s} \in \mathbb{R}^V_{>0}$, such that $r_v = s_v^{-1}$, and

$$W = \text{diag}(\mathbf{r})M\text{diag}(\mathbf{s})$$

- Two sequences of non-negative vectors $\alpha(t), \beta(t)$, such that $\alpha(t)$ is non-decreasing in every component and $\beta(t)$ is convergent.

MPA-like is $\omega(t) \in (0, 1]^V$ and $\eta(t) \in [1, +\infty)^V$ such that

$$\omega(0) = \eta(0) = 1$$

$$\omega_v(t + 1) = \frac{1}{1 + \alpha_v(t) + \sum_w W_{vw} (1 - \omega_w(t))}$$

$$\eta_v(t + 1) = 1 + \beta_v(t) + \sum_w M_{vw} \omega_w(t) \eta_w(t)$$
Proof 2/3: Message digraph \mathcal{M}_G

\mathcal{G}

Social graph $\mathcal{G} = (I, E)$

\mathcal{M}_G

Message digraph $\mathcal{M}_G = (\tilde{E}, \Phi)$

$\tilde{E} = \{ji : \{i, j\} \in E, i \neq f\}$

$\Phi = \{(ji, ik) : ji, ik \in \tilde{E}, j \neq k\}$
Proof 2/3: Message digraph \mathcal{M}_G

Social graph $\mathcal{G} = (I, E)$

Message digraph $\mathcal{M}_G = (\vec{E}, \Phi)$

The messages $W_{i\to j}(t)$ and $H_{i\to j}(t)$ are associated to node ji in \mathcal{M}_G.

The counterpart of the constant message $W_{f\to k}(t) = 0$ is the (constant) sequence $\alpha_{ik} = C_{kf}/C_{ki} > 0$.
Proof 3/3: analysis on any digraph \mathcal{M}

If \mathcal{M} acyclic \iff convergence

(follow partial order)
If \mathcal{M} acyclic \implies convergence

If \mathcal{M} is strongly connected and contains kh where $\alpha_{kh}(t) > 0$ \implies convergence

(W-messages have limits by monotonicity; update matrix for H-messages non-negative irreducible and eventually Shur stable)
Proof 3/3: analysis on any digraph \mathcal{M}

If \mathcal{M} acyclic \implies convergence

If \mathcal{M} is strongly connected and contains kh where $\alpha_{kh}(t) > 0$ \implies convergence

If every node in a non-trivial strongly connected component of \mathcal{M} can reach kh where $\alpha_{kh}(t) > 0$ \implies convergence

(Condense components, use partial order, compose previous results)
Proof 3/3: analysis on any digraph \mathcal{M}

If \mathcal{M} acyclic \implies convergence

If \mathcal{M} is strongly connected and contains kh where $\alpha_{kh}(t) > 0$ \implies convergence

If every node in a non-trivial strongly connected component of \mathcal{M} can reach kh where $\alpha_{kh}(t) > 0$ \implies convergence

\mathcal{M}_G satisfies these assumptions \implies the MPA converges
Simulations
Simulations: random tree

Random tree graph: 50 nodes, 49 edges, diameter=13, $C_{ij} = 0.05$ for all i

Convergence time = diameter
Simulations: random tree

Random tree graph: 50 nodes, 49 edges, diameter=13, $C_{ij} = 0.05$

Left: true $H(\ell)$ vs. estimate $H_\infty(\ell)$

Right: true potential $W^{i\to\ell}$ vs. $W_\infty^{i\to\ell}$

MPA is *exact* on trees
Random addition of 10 edges: 50 nodes, 59 edges, $C_{if} = 0.05$

Convergence time of $W^{i\to j}(t)$ increases slightly
Convergence time of $H^{i\to j}(t)$ increases significantly
Simulations: graph with few cycles

Random addition of 10 cycles: 50 nodes, 59 edges, $C_{ij} = 0.05$

Left: true $H(\ell)$ vs. estimate $H_\infty(\ell)$

Right: true potential $W^i\rightarrow\ell$ vs. $W^i_\infty\rightarrow\ell$
Simulations: Erdős-Rényi random graph

Erdős-Rényi random graph: 50 nodes, 131 edges, $C_{ij} = 0.05$

Convergence time of $W^{i \rightarrow j}(t)$ almost unchanges
Convergence time of $H^{i \rightarrow j}(t)$ increases significantly
Simulations: Erdős-Rényi random graph

Erdős-Rényi random graph: 50 nodes, 131 edges, $C_{if} = 0.05$

Left: true $H(\ell)$ vs. estimate $H_\infty(\ell)$

Right: true potential $W^{i\to\ell}$ vs. $W_\infty^{i\to\ell}$
Conclusions
Message-passing algorithm with two messages H, W
- designed on trees by an electrical analogy
- can be used on any undirected weighted graph (I, E, C)
- proved to converge if $C^\top = C$
- convergence in two phases: first messages W, then H
 - cycles degrade convergence speed (of H)
- cycles degrade (not too much) the accuracy of the approximation

More insights in:
W.S. Rossi and P. Frasca. Mean-field analysis of the convergence time of message-passing computation of harmonic influence in social networks, IFACWC, Toulouse, 2017
Refine analysis of MPA

- Extend convergence proof to non-symmetric networks
- Evaluate convergence time
- Estimate the error between convergence value and actual H

Improve design of MPA

- Accelerate convergence of $H^{i\rightarrow j}$ messages

Can similar ideas be used for other centrality measures?