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Contents	☺	

•  What	is	in	this	talk?	
– MulP-agent	systems	
–  PosiPve	systems	
–  Switched	systems	
– OpPmizaPon	(relaxaPons)	
–  “Uncertainty”	
– Graph	theory	

•  What	is	not	in	this	talk?	
–  Stability	
–  Frequency	domain	
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Mo(va(on	and	applica(ons	
•  Large-scale,	complex,	distributed	

sensing,	actuaPon	and	control	
systems:	
–  Smart	grid,	Smart	buildings,	Aircra?	

systems,	Automo(ve,	Robo(cs,	
Manufacturing	&	Automa(on,	
Security	&	Surveillance	

Observa(ons:	
•  A	very	large	number	of	(discrete	&	

conPnuous)	states	and	decision	
variables	

•  Complex	requirements	à	need	
controllers	too	complex	to	be	
designed/analyzed	by	individuals		Scalable	tools	for	data	analysis,	control	

design	and	verificaPon	(theory	and	
so^ware)	are	lagging!!!	
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Formal	methods	in	control	
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• 	Models	for:		
-  the	system	(usually	hybrid/

switched	ODEs,	with	conPnuous/
discrete	inputs,	disturbances	and	
parametric	uncertainty)	

-  the	environment	(faults,	external	
events)	

• 	Formalized	assumpPons	and	
requirements	
-  linear	temporal	logic	and	its	

extensions	
• 	Methods	for	verificaPon	and	
synthesis	
-  algorithms	that	can	process	

formal	models	and	requirements	
to	do	analysis	and	control	
synthesis	

Model-based approach 



System	models	

Some	characterisPcs:	
•  Hard	constraints	(on	input	and	states)	
•  Infinite	horizon	specificaPons	
•  Hybrid	(either	the	system	or	the	controller	or	both)	
•  Robust/reacPve	
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x(k + 1) = f(x(k), uc(k), ud(k), ✏c(k), e(k))

ẋ = f(x, uc, ud, ✏c, e)

x 2 X : state

uc 2 Uc : continuous control input

ud 2 Ud : discrete control input

✏c 2 Dc : disturbance input

e 2 Dd : discrete uncontrollable input

DifferenPal	equaPons	(conPnuous-Pme):	

Or,	difference	equaPons	(discrete-Pme):	

X ⇢ RN



State-of-the-art	in	formal	methods	in	
control	(incomplete	list!)	

•  Hard	state/input	constraints,	hybrid	dynamics,	complex	
specificaPons	(e.g.,	temporal	logics)	
–  Belta,	Fainekos,	Girard,	Murray,	Pappas,	Tabuada,	Tomlin	…	

•  ApplicaPons	(with	“small”	state-space	dim.)	
–  RoboPcs,	building	thermal	management,	adapPve	cruise	control,	

aircra^	subsystems,	traffic	control	
•  “Medium”-scale	systems		

–  Monotonicity	(Hafner	&	Del	Vecchio	11,	Coogan	&	Arcak	15)	
–  MulP-scale	abstracPons	for	safety	(Girard	et	al.	13)	
–  ComposiPonal	synthesis	(Nilsson	&	Ozay,	Chen	et	al.,	Kim	et	al.),	

incremental	abstracPons	(Nilsson	&	Ozay)	
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aircra^	subsystems,	traffic	control	
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–  Monotonicity	(Hafner	&	Del	Vecchio	11,	Coogan	&	Arcak	15)	
–  MulP-scale	abstracPons	for	safety	(Girard	et	al.	13)	
–  ComposiPonal	synthesis	(Nilsson	&	Ozay,	Chen	et	al.,	Kim	et	al.),	

incremental	abstracPons	(Nilsson	&	Ozay)	
•  “Large”-scale	(but	not	synthesis)	

–  Parametric	verificaPon	of	rectangular	hybrid	automata	(Johnson	&	
Mitra	12)	

–  AbstracPons	of	large	collecPons	of	stochasPc	systems	(Soudjani	&	
Abate	15)	
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Recurring	theme:	
structural	properPes		



Large	collec(ons	of	systems	
Example	1:	Emergency	response	with	a	robo(c	

swarm	
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•  Deploy	a	large	collecPon	of	robots	(e.g.,	
quadrotors,	ground	vehicles)	for	search	
and	rescue	mission	

•  Plan	trajectories	by	taking	dynamic	
constraints	into	account	

•  Requirements:	
•  Sufficiently	many	robots	in	certain	
areas	at	any	given	Pme	

•  Not	too	many	robots	in	certain	regions	
(danger	zones)	

•  Collision	avoidance	
•  Charging/reporPng	constraints	

CreaPve	commons	public	license	



Large	collec(ons	of	systems	
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Example	2:	Coordina(on	of	thermosta(cally	
controlled	loads	(TCLs)	Thermosta-cally$Controlled$Loads$(TCLs)$

•  Refrigerators,$water$heaters,$air$
condi-oners,$electric$space$
heaters,$etc.$

•  Hystere-c$ON/OFF$$ $ $
$control$(dead,band)$

•  Store$thermal$energy$ $ $ $
$like$ba`eries$store$ $
$chemical$energy$

TCLs"

3/13/12$ Mathieu$&$Callaway,$UC$Berkeley$ 3$
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The$value$of$real,-me$data$in$
controlling$electric$loads$for$
demand$response$

Johanna$Mathieu,$Mechanical$Engineering$
Duncan$Callaway,$Energy$&$Resources$Group$
University$of$California,$Berkeley$

Carnegie$Mellon$Conference$on$the$Electricity$Industry:$March$12,14,$2012$

•  ThermostaPcally	controlled	loads	(e.g.,	
refrigerators,	air	condiPoners,	water	
heaters)	for	demand	response	

•  Thermal	dynamics	can	be	controlled	via	
ON/OFF	switches	

•  Requirements:	
•  Not	too	many	TCLs	ON	at	the	same	Pme	
(to	avoid	line	overload)	

•  Sufficiently	many	ON	all	the	Pme	(to	
uPlize	renewable	energy)	

•  Local	temperature	constraints	(never	out	
of	desired	temperature	range)	

Mathieu,	Koch,	Callaway,	IEEE	Trans.	on	Power	Systems	



Common	structural	proper(es	

•  Large	number	of	systems,	small	number	of	classes	
•  CounPng	constraints:	“how	many	in	each	mode?”,	“how	

many	in	what	region?”	
•  IdenPty	of	individual	systems	is	not	important	
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roboPc	swarm	

For	simplicity,	assume:	
•  dynamics	are	idenPcal	within	each	class	
•  (wlog)	there	is	only	one	class	



Motivating example: TCLs

The temperature ✓ of a TCL has dynamics

˙

✓

i

=

(
f

on

(✓

i

), if TCL is on

f

off

(✓

i

), if TCL is o↵

Suppose we have a collection of TCL’s {✓
i

}
i2[N ].

• Customers: Want TCL temperature to be close to a desired
temperature ✓

des

i

, but small deviations are allowed.

k✓
i

� ✓

des

i

k  � (1)

• Utility company: Wants to control aggregate demand, i.e. the
number of TCLs that are on

NX

i=1

1{TCL i is on} (2)

Goal: Find a switching (i.e., on/o↵) strategy that exploits the
flexibility in (1) so that (2) can be controlled.
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Mathema(cal	formula(on:	TCLs	
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Thermosta-cally$Controlled$Loads$(TCLs)$

•  Refrigerators,$water$heaters,$air$
condi-oners,$electric$space$
heaters,$etc.$

•  Hystere-c$ON/OFF$$ $ $
$control$(dead,band)$

•  Store$thermal$energy$ $ $ $
$like$ba`eries$store$ $
$chemical$energy$

TCLs"

3/13/12$ Mathieu$&$Callaway,$UC$Berkeley$ 3$



Mathema(cal	formula(on:	General	
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General problem statement

•
N identical switched system with M modes:

ẋ

i

(t) = f

�i(t)(xi(t)), �

i

: R 7! [M ],

• Mode-specific unsafe sets: U
m

, m 2 [M ]

• Equivalent to forced mode switches.

• Mode-counting bounds:

K

m


NX

i=1

1
m

(�

i

(t))  K

m

(3)

Want to synthesize a switching strategy �

i

such that (3) satisfied
over time.

3 / 16

Structural	property:	both	the	dynamics	and	the	specificaPon	
(counPng	constraints)	are	permutaPon	invariant!	



Solu(on	overview	

•  Construct	symbolic	abstracPons	(i.e.,	a	finite	
transiPon	system)	and	aggregate	dynamics	
and	define	“equivalent”	problems	on	these	
structures	

•  (Analyze	abstracPons	to	understand	
fundamental	limitaPons	if	any)	

•  An	opPmizaPon-based	soluPon	approach	
•  Analysis	of	the	soluPon	approach	
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Solu(on	overview	
•  Construct	symbolic	abstracPons	(i.e.,	a	finite	
transiPon	system)		
–  ε-approximate	bisimilar	abstracPon	

	

–  for	each	path	on	the	finite	transiPon	system,	there	is	a	
piecewise	constant	input	that	generates	a	trajectory	such	
that	Pme-sampled	trajectory	remains	ε-close	to	the	
discrete	states	
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Illustration: abstraction

• Mode 1 abstraction
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Illustration: abstraction

• Mode 2 abstraction
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Illustration: abstraction
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ẋ = f(x, u2)

ẋ = f(x, u1)

Pappas,	Girard,	Tabuada	



Abstrac(on	of	individual	dynamics	
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Approach

Approach: abstraction

• Assume dynamics are �-GAS with KL functions �
m

k�m

t

(x)� �

m

t

(y)k1  �

m

(kx� yk1, t) . (4)

• With discretization in time (⌧) and space (⌘), an ✏-approxi-
mate bisimilar model is obtained if �

m

(✏, ⌧) +

⌘

2  ✏.

• Transition graphs are deterministic

4 / 18



Abstrac(on	of	individual	dynamics	
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Pola,	Girard,	Tabuada	08	
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Abstrac(on	of	individual	dynamics	
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Illustration: abstraction
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Abstrac(on	of	individual	dynamics	
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Illustration: abstraction

• Mode 2 abstraction
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mode-transition graph G = (V,E)

Approach
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Observations

• For a homogeneous collection, each system will have an
identical mode-transition graph

• Transition graphs are deterministic

• Consider mild heterogeneity

ẋ

i

(t) = f

�i(t)(xi(t), di(t)), �

i

: R 7! [M ],

where d

i

2 D (bounded parametric uncertainty or
disturbance). If f

m

(x, d) is L
m

-Lipschitz in x, and

||f
m

(x, d)� f

m

(x, 0)||  �

m

for all d

i

2 D,

then, with discretization in time (⌧) and space (⌘), an
✏-approximate bisimilar model is obtained if
�

m

(✏, ⌧) +

�m
Lm

(e

Lm⌧ � 1) +

⌘

2  ✏.

5 / 18

Some	observa(ons	
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Illustration: abstraction
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mode-transition graph G = (V,E)
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Some	observa(ons	
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Illustration: abstraction

• Mode 2 abstraction
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mode-transition graph G = (V,E)



Aggregate dynamics on graph

Let V = {v1, . . . vK} denote the nodes of mode-transition graph
G = (V,E). Introduce the states wm1

k

and r

m1,m2
k

.

•
w

m

i

represents number of systems in mode m at v

k

.

•
r

m1,m2
k

represents number of systems at v

k

that switch

from m1 to m2.

• The dynamics become

�
w

m1
k

�+
=

X

j2Nm1
k

 
w

m1
j

+

X

m2

r

m2,m1
j

� r

m1,m2
j

!
,

• Constrained control actions:

0 
X

m2

r

m1,m2
k

 w

m1
k

,

• Compact description: w+
= Aw +Br

6 / 17

Aggregate	dynamics	on	graph	
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Graph $ aggregate dynamics

Consider aggregate dynamics ⌃
G

: w+
= Aw +Br with safety

and mode-counting constraints:

w

m

k

(t) = 0 8k 2 U

m

, (5)

K

m


X

i2[N ]

w

m

i

(t)  K

m

. (6)

Then,
• if 9 sequence of control inputs r! for ⌃

G

that enforce (5) and
(6) with U

m

+B

✏

, then 9 a solution to the original problem.
• if @ a sequence of control input r! for ⌃

G

that enforces (5)
and (6) with U

m

�B

✏

, then no solution to the original
problem.

8 / 17

Equivalent	problem	on	aggregate	
dynamics	

22	

Theorem	1:		

We	will	focus	on	aggregate	dynamics.	We	need	infinite	horizon	strategies!		
	
Solu(on	strategy:	from	a	given	iniPal	state,	steer	the	system,	while	respecPng	the	
constraints,	to	a	nice	state	from	which	a	periodic	input	suffices.		

Nilsson,	Ozay,	HSCC	16,	arxiv	17	
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Controllability-like	condi(ons	

23	

Solu(on	strategy:	from	a	given	ini(al	state,	steer	the	system,	while	
respecPng	the	constraints,	to	a	nice	state	from	which	a	periodic	input	
suffices.	
•  Let’s	put	the	mode-counPng	constraints	aside.	
•  Are	there	any	fundamental	limitaPons	on	what	states	can	be	

reached	from	an	iniPal	condiPon?	

with local safety and

input constraints

Nilsson,	Ozay,	HSCC	16,	arxiv	17	
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Controllability-like	condi(ons	
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Solu(on	strategy:	from	a	given	iniPal	state,	steer	the	system,	while	
respecPng	the	constraints,	to	a	nice	state	from	which	a	periodic	input	
suffices.	
•  Let’s	put	the	mode-counPng	constraints	aside.	
•  Are	there	any	fundamental	limitaPons	on	what	states	can	be	

reached	from	an	iniPal	condiPon?	

Defini(on:	The	period	n	of	a	strongly	connected	graph	is	the	greatest	
common	divisor	of	the	lengths	of	its	cycles.		
	
Theorem	2:	If	the	connected	components	of	mode-transiPon	graph	
has	period	n=1,	any	state	is	reachable	from	any	other	state	(within	the	
connected	component).	If	n>1,	then	the	reachable	states	live	on	a	
hyperplane	arrangement	with	n	hyperplanes.	

with local safety and

input constraints

Nilsson,	Ozay,	HSCC	16,	arxiv	17	



Solu(on	strategy	
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Solu(on	strategy:	from	a	given	iniPal	state,	steer	the	system,	while	
respecPng	the	constraints,	to	a	nice	state	from	which	a	periodic	input	
suffices.	
•  Prefix:	for	a	fixed	horizon	T,	given	iniPal	state,	we	will	steer	the	

state	at	Pme	T	to	“nice”	cycles	
•  Suffix:	let	individual	systems	circulate	in	the	cycles	
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Cycle	terminology	
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Cycle terminology

• Cycle C = {v
c1 , . . . , vc|C|} in G

• A cycle assignment for C is a function ↵ : C 7! R+
.

Mode-counts on for a cycle assignment:

• Max-count  
m

(C,↵): maximal number of individual systems
simultaneously in mode m when circulating ↵ in C:

• Min-count  m

(C,↵): minimal number of individual systems
simultaneously in mode m when circulating ↵ in C:

10 / 17
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Figure 1: Illustration of the assignment ↵ = [3, 2, 3, 4, 4] on a
cycle C of length 5, with two modes 1 (blue) and 2 (red). On the
left, the mode-1-count is 3+4+4 = 11, while the mode-2-count is
3+2=5. After circulating the assignment one step, as displayed to
the right, the mode-1-count is 2+3+4 = 9 and the mode-2-count
is 4+3 = 7. Over all possible circulations, the minimal mode-1-

count is 8, and the maximal mode-1-count is 11, so  
1

(C,↵) = 11

and  1(C,↵) = 8. Similarly,  
2

(C,↵) = 8 and  2(C,↵) = 5.

Definition 5. An integer assignment to a cycle C is
an assignment to C such that ↵(j) is an integer for j 2 [|C|].

Definition 6. The maximal mode-m-count for a cycle
C with assignment ↵ is

 
m
(C,↵) = max

k2[|C|]

X

i: ⌅C(vi)=m

↵ ((k + i) mod |C|) .

For a given assignment, the maximal mode-m-count denotes
the maximal number of systems that are simultaneously in
mode m when the assignment ↵ circulates around C.

Definition 7. The minimal mode-m-count for a cycle
C with assignment ↵ is

 m(C,↵) = min
k2[|C|]

X

i: ⌅C(vi)=m

↵ ((k + i) mod |C|) .

These functions are illustrated in Figure 1 for an example
cycle-assignment pair. Finally, we define a function �C :
R|C| ! R|V | that for a cycle C maps the values of a cycle
assignment ↵ to the corresponding nodes in the graph.

�C(↵)k =

(

↵(j) if ⌫j in C corresponds to ⌫k in V ,

0 otherwise.

4.3 Prefix-suffix strategies as a linear program
We restrict our search to control strategies r(s) for Prob-

lem 2 that are of a particular form.

Definition 8. A control strategy for a condensed initial
state �

0

is of prefix-su�x type if it consists of an initial
mode assignment w(0) s.t. ⇤(w(0)) = �

0

, a finite number
of inputs r(0), . . . , r(T �1), and a set of cycles {Cj}j2J with
assignments {↵j}j2J such that the cycles are populated with
their respective cycle assignments at time T .

For given initial positions �
0

2 NK , mode-counting bounds
{Km,Km}m2[M ]

, a given set of cycles {Cj}j2J , and a hori-
zon T , the following linear feasibility program searches for
a prefix-su�x control strategy.

find ↵
1

, . . . ,↵J cycle assignments,

r(0), . . . , r(T � 1),

w(0), . . . ,w(T ),

s.t. Km 
X

k2[K]

wm
k (t)  Km, 0  t  T � 1, (12a)

Km 
X

j

 m(Cj ,↵j), (12b)

X

j

 
m
(Cj ,↵j)  K

m
, (12c)

⇤(w(T )) =
X

j

�Cj (↵j), (12d)

w(t+ 1) = Aw(t) +Br(t), t = 0, . . . , T � 1, (12e)

⇤(w(0)) = �
0

, (12f)
X

m2

rm1,m2
j = wm1

j for all j 2
[

i2Um1

Nm1
i , (12g)

rm2,m1
j = 0 for all m

2

2 [M ], j 2 Um1 , (12h)

control constraints (8) . (12i)

We briefly describe the purpose of each constraint. Firstly,
(12a) assures that mode-counting constraints are satisfied
in the prefix phase, i.e., up to time T � 1. Similarly, (12b)-
(12c) restrict mode-counting in the cyclic phase by ensuring
that the sums of maximal and minimal mode-counts over all
cycles are within the bounds. Eq. (12d) connects the prefix
phase to the su�x phase by ensuring that the condensed
state at time T agrees with the sum of all cycle assignments,
while (12e) propagates the dynamics up to time T , and (12f)
implies that the initial statew(0) must condense to the given
initial condition �

0

. The mode-safety constraints are taken
care of through (12g)-(12h).
The maximal and minimal mode-counts for a given as-

signment ↵ can be represented by the maximal and minimal
entries of the product Y m

C ↵, where Y m
C is the (0, 1)-matrix

s.t.

[Y m
C ]ij =

(

1, if ⌅C(⌫j�(i�1) mod |C|) = m,

0, otherwise .

To illustrate, the cycle C in Figure 1 has matrices

Y 1

C =

"

0 0 1 1 1

1 0 0 1 1

1 1 0 0 1

1 1 1 0 0

0 1 1 1 0

#

, Y 2

C =

"

1 1 0 0 0

0 1 1 0 0

0 0 1 1 0

0 0 0 1 1

1 0 0 0 1

#

.

Thus, the constraints  m(C,↵) � Km,  
m
(C,↵)  Km,

can be enforced by the linear vector inequalities

Km1  Y m
C ↵  Km1.

The feasibility program (12) can be solved either as a nor-
mal linear program (LP) feasibility problem or as an integer
linear program (ILP) feasibility problem. Since the size of
it can be large in practice (for instance due to a fine-grained
abstraction, see paragraph on complexity below), the ILP
version may be impractical. Furthermore, the number of
individual systems N may a↵ect the di�culty of the ILP,
since a larger N increases the number of possible integer
points. In the next section we discuss how feasible solutions
to the ILP are related to feasible solutions of the LP. By
construction, the following result holds.

3 2 3

44

2 2

1
1

1
circulate�!

4 3 2

34

2 2

1
1

1

Figure 1: Illustration of the assignment ↵ = [3, 2, 3, 4, 4] on a
cycle C of length 5, with two modes 1 (blue) and 2 (red). On the
left, the mode-1-count is 3+4+4 = 11, while the mode-2-count is
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 m(C,↵) = min
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↵ ((k + i) mod |C|) .

These functions are illustrated in Figure 1 for an example
cycle-assignment pair. Finally, we define a function �C :
R|C| ! R|V | that for a cycle C maps the values of a cycle
assignment ↵ to the corresponding nodes in the graph.

�C(↵)k =
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↵(j) if ⌫j in C corresponds to ⌫k in V ,

0 otherwise.

4.3 Prefix-suffix strategies as a linear program
We restrict our search to control strategies r(s) for Prob-

lem 2 that are of a particular form.

Definition 8. A control strategy for a condensed initial
state �

0

is of prefix-su�x type if it consists of an initial
mode assignment w(0) s.t. ⇤(w(0)) = �

0

, a finite number
of inputs r(0), . . . , r(T �1), and a set of cycles {Cj}j2J with
assignments {↵j}j2J such that the cycles are populated with
their respective cycle assignments at time T .

For given initial positions �
0

2 NK , mode-counting bounds
{Km,Km}m2[M ]

, a given set of cycles {Cj}j2J , and a hori-
zon T , the following linear feasibility program searches for
a prefix-su�x control strategy.

find ↵
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, . . . ,↵J cycle assignments,

r(0), . . . , r(T � 1),
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control constraints (8) . (12i)

We briefly describe the purpose of each constraint. Firstly,
(12a) assures that mode-counting constraints are satisfied
in the prefix phase, i.e., up to time T � 1. Similarly, (12b)-
(12c) restrict mode-counting in the cyclic phase by ensuring
that the sums of maximal and minimal mode-counts over all
cycles are within the bounds. Eq. (12d) connects the prefix
phase to the su�x phase by ensuring that the condensed
state at time T agrees with the sum of all cycle assignments,
while (12e) propagates the dynamics up to time T , and (12f)
implies that the initial statew(0) must condense to the given
initial condition �

0

. The mode-safety constraints are taken
care of through (12g)-(12h).
The maximal and minimal mode-counts for a given as-

signment ↵ can be represented by the maximal and minimal
entries of the product Y m

C ↵, where Y m
C is the (0, 1)-matrix

s.t.

[Y m
C ]ij =

(

1, if ⌅C(⌫j�(i�1) mod |C|) = m,

0, otherwise .

To illustrate, the cycle C in Figure 1 has matrices

Y 1

C =
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0 0 1 1 1
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1 1 1 0 0

0 1 1 1 0

#

, Y 2

C =
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1 1 0 0 0

0 1 1 0 0

0 0 1 1 0

0 0 0 1 1
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.

Thus, the constraints  m(C,↵) � Km,  
m
(C,↵)  Km,

can be enforced by the linear vector inequalities

Km1  Y m
C ↵  Km1.

The feasibility program (12) can be solved either as a nor-
mal linear program (LP) feasibility problem or as an integer
linear program (ILP) feasibility problem. Since the size of
it can be large in practice (for instance due to a fine-grained
abstraction, see paragraph on complexity below), the ILP
version may be impractical. Furthermore, the number of
individual systems N may a↵ect the di�culty of the ILP,
since a larger N increases the number of possible integer
points. In the next section we discuss how feasible solutions
to the ILP are related to feasible solutions of the LP. By
construction, the following result holds.



Linear program

For cycles C1, . . . , CJ , required mode-counts Km, horizon T

find ↵1, . . . ,↵J cycle assignments,

r(0), . . . , r(T � 1),

w(0), . . . ,w(T ),

s.t. Km 
X

k2[K]

w

m
k (t)  Km, 0  t  T � 1,

Km 
X

j

 m(Cj ,↵j),

X

j

 
m
(Cj ,↵j)  K

m
,

⇤(w(T )) =
X

j

�Cj (↵j),

w(t+ 1) = Aw(t) +Br(t), t = 0, . . . , T � 1,

⇤(w(0)) = �0,
X

m2

r

m1,m2
j = w

m1
j for all j 2

[

i2Um1

Nm1
i ,

r

m2,m1
j = 0 for all m2 2 [M ], j 2 Um1 ,

control constraints.
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mode-counPng	during	prefix	

mode-counPng	during	suffix	

boundary	condiPons	between	
prefix	and	suffix		

system	dynamics		

local	safety	constraints		

Feasibility	problem	with	linear	constraints:	
•  integrality	constraints	on	the	inputs	

(ILP)	
•  relaxing	integrality	(LP)	

Number	of	constraints	and	variables	are	
independent	of	the	number	of	systems	N!	



Analysis	
•  Integer	solu(ons	(ILP)	

–  Completeness	of	prefix-suffix	solu(ons:	There	exists	a	finite	T	and	
some	maximal	cycle	length	L	such	that	ILP	with	all	cycles	with	length	
less	than	L	provides	a	complete	soluPon	to	the	original	problem	

–  From	any	feasible	ILP	soluPon,	we	can	extract	a	soluPon	to	the	original	
problem	

•  Non-integer	solu(ons	(LP):	
–  Enough	to	consider	simple	cycles	
–  Gives	cerPficates	for	non-existence	of	soluPons	

•  Rounding	a	non-integer	solu(on:	
–  A	non-integer	soluPon	over	the	cycles	can	be	rounded	to	an	integer	

feasible	soluPon	with	mode	counPng	loss	at	most	

32	

 m(C,↵int)   m(C,↵avg) +
|C|
4

Nilsson,	Ozay,	HSCC	16,	arxiv	17	
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✓̇i = �a(✓i � ✓a)� bPm

✓ :room temperature

✓a :ambient temperature

Parameters	from	Mathieu,	Koch,	Callaway,	IEEE	Trans.	on	Power	Systems,	2013	

local safety

✓i 2 [21.5, 23.5]

Pm = 5.6 when ON

Pm = 0 when OFF

For	an	individual	system	if	only	local	ON/OFF	control	
is	used	(no	demand	response	for	extra	switching),	the	
temperature	evolves	as	follows:	
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✓̇i = �a(✓i � ✓a)� bPm

✓ :room temperature

✓a :ambient temperature

Parameters	from	Mathieu,	Koch,	Callaway,	IEEE	Trans.	on	Power	Systems,	2013	

local safety

✓i 2 [21.5, 23.5]

Pm = 5.6 when ON

Pm = 0 when OFF

For	an	individual	system	if	only	local	ON/OFF	control	
is	used	(no	demand	response	for	extra	switching),	the	
temperature	evolves	as	follows:	

Roughly,	cycles	are	defining	new	“bands”	within	the	
dead-band	allowed	by	the	local	safety	constraints.		
That	is,	we	are	changing	the	duty	cycle.	



Results	on	TCLs	

35	

Example 2: TCL’s

Allowed more flexibility in prefix part

0 2 4 6 8 10
t

2500
3000
3500
4000
4500

m
od

e-
on

-c
ou

nt

Lower mode-count:

0 2 4 6 8 10
t

21.0
21.5
22.0
22.5
23.0
23.5
24.0

�

Higher mode-count:

0 2 4 6 8 10
t

21.0
21.5
22.0
22.5
23.0
23.5
24.0

�
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✓̇i = �a(✓i � ✓a)� bPm

N	=	10000	units		
	
10000-D	state-space	with	
210000	modes!	

✓ :room temperature

✓a :ambient temperature

local safety

✓i 2 [21.5, 23.5]

Pm = 5.6 when ON

Pm = 0 when OFF

Two	different	runs	with	different	mode-counPng	
constraints	(also	stricter	constraints	at	the	suffix)	

Parameters	from	Mathieu,	Koch,	Callaway,	IEEE	Trans.	on	Power	Systems,	2013	
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•  CounPng	the	agents	in	a	
region	of	state-space	

•  Time-evoluPon	of	
counPng	constraints	
(counPng	LTL)	

•  cp	=	[atom	prop.,	count]		
•  Possible	to	encode	
asynchrony	as	well	

With	Yunus	Emre	Sahin	&	PeMer	Nilsson	
ICCPS17	

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Notation and definitions

This section introduces notation and necessary background
information. We follow the exposition in [17] for the basic
notions related to transition systems and extend them to
collections.

In the rest of the paper, N denotes the set of non-negative
integers and [N ] = {1, . . . , N} denotes the set of positive
integers up to N . The indicator function of a set A is denoted
1
A

(x) and is equal to 1 if x 2 A and to 0 otherwise. The
vector 1

n

represents the n-dimensional vector consisting of
all 1’s.

We use transition systems to model the dynamics of a
single agent.

Definition 1: A transition system is a tuple T = (S,!
, AP, L) where S is a finite set of states, !✓ S ⇥ S is a
transition relation, AP is a finite set of atomic propositions
and L : S ! 2

AP is a labeling function.
We say that a state s 2 S satisfies an atomic proposition

a 2 AP if a 2 L(s). We assume that the transition systems
considered do not have any blocking states. That is, for all
s 2 S, there exists a state s0 such that (s, s0) 2!. This
is without loss of generality since the transition system can
always be amended with a dummy sink state with a self-
transition to obtain a non-blocking transition system that is
equivalent for synthesis purposes.

Definition 2: A path of a transition system T = (S,!
, AP, L) is an infinite sequence ⇡ : s0s1s2 . . . of states such
that (s

k

, s
k+1) 2!. A trace of T corresponding to a path ⇡

is defined as trace(⇡) = L(s0)L(s1)L(s2) . . . 2 (2

AP

)

! .
We are interested in controlling the collective behavior of

N homogeneous agents, dynamics of which are represented
by identical transition systems T . We assume that all the
transitions in a transition system are controllable (or, action
deterministic), that is, if an agent is in state s and a transition
exists from state s to s0, then the controller can choose to
take this transition and enforce the agent to transition to
state s0. In the context of robotics it is common to directly
model the motion of a robot using such an action determin-
istic transition system on some grid world; this approach
is based on the assumption that the underlying dynamics
allow steering the robot arbitrarily. Another alternative is to
design low-level motion primitives (see, for instance, [18])
to enable deterministic transitions among different regions
of the workspace. For more complex and general dynamics,
abstraction methods proposed in [19], [20], [21] can be used,
where each node in the transition corresponds to a subset of
the original state-space.

Definition 3: Let ⇧ = {⇡n}
n2[N ] be the collection of

paths followed simultaneously by N agents, where each
agent n has the dynamics Tn

= (S,!, AP, L) and path
⇡n

: sn0 s
n

1 s
n

2 . . .. The collective trace corresponding to ⇧

is a sequence ctrace(⇧) = � = �0�1�2 . . . of functions
�
k

: AP ! [N ] such that for all a 2 AP , �
k

(a) =P
n2[N ] 1L(snk )

(a).

In words, a collective trace is a sequence of functions �
k

that, at step k, maps each atomic proposition to the number
of agents that are in a state satisfying that atomic proposition.

B. Counting LTL
We introduce a temporal logic that is useful to specify and

reason about the collective behavior of multiple agents. We
call this logic counting linear temporal logic, or, for short,
counting LTL.

The syntax of a counting LTL formula over a set of atomic
propositions AP is given by the following grammar:

' ::= True | cp | '1 ^ '2 | ¬' | �' | '1 U '2, (1)

where cp 2 AP ⇥ N is a counting proposition and ', '1

and '2 are counting LTL formulas. The symbols ¬, ^, �,
U are logical operators negation, conjunction and temporal
operators next and until, respectively. These operators can be
used to define additional operators such as disjunction ('1_
'2

.
= ¬(¬'1 ^ ¬'2)), false (False .

= ¬True), eventually
(⌃' .

= True U '), and always (⇤'
.
= ¬⌃¬').

Next, we present the semantics of counting LTL. Given a
collective trace �, satisfaction of a counting LTL formula '
by � at step k, denoted as �, k |= ', is inductively defined
as follows:

• �, k |= True ,
• for any counting proposition cp = [a,m] 2 AP ⇥ N,

�, k |= [a,m] if and only if �
k

(a) � m,
• �, k |= '1^'2 if and only if �, k |= '1 and �, k |= '2,
• �, k |= ¬' if and only if �, k 6|= ',
• �, k |= �' if and only if �, k + 1 |= ', and
• �, k |= '1 U '2 if and only if there exists l � 0 such

that �, k+ l |= '2 and �, k+ l0 |= '1 for all 0  l0 < l.
We say that a collective trace � satisfies a counting LTL
formula ', and write � |= ', if �, 0 |= '.

To exemplify, assume that a collective trace � is generated
by N agents. Then � satisfies the property ⌃[a, 3] if there
exists a time k � 0 when the states of at least three agents
satisfy a. Similarly, � satisfies ⇤¬[b, 4] if at all times k � 0,
the state of at most three agents satisfy b. We also point out
the tautologies [c, 0] = True , [c,m] = False for m > N ,
and that the negation of a counting proposition is ¬[c, k] =
[¬c,N � k + 1].

Remark 1: It is also possible to consider a metric version
of counting LTL, i.e. similar to metric temporal logic (MTL).
Since we only deal with systems that evolve in discrete-time
steps, MTL would just be syntactic sugar in this case, not
adding to the expressivity of the logic.

C. Problem statement
Now, we are ready to formally state the multi-agent

coordination problem with counting LTL constraints.
Problem 1: Given a counting LTL formula ' over a set

of atomic propositions AP , and a collection of N agents
with identical dynamics Tn

= T
.
= (S,!, AP, L) and (non-

identical) initial conditions sn0 for n 2 [N ], synthesize, for
each agent n, a path ⇡n starting at sn0 such that the collective
trace corresponding to ⇧ = {⇡n}

n2[N ] satisfies '. That is,



Summary:	structure	for	scalability	
•  A	control	synthesis	method	for	large	collecPons	of	
systems	with	coun(ng	constraints	
–  exploits	the	symmetry	(permutaPon	invariance)	in	the	
dynamics	and	in	specificaPons	

–  works	across	scales	(10	to	10K	or	more	systems)	
–  with	potenPal	applicaPons	in	different	domains	
–  extensions	to	asynchrony,	counPng	temporal	logic	
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•  Current	work	
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