



## **Coordination of large collections of "uncertain" switched systems**

#### Necmiye Ozay, EECS University of Michigan, Ann Arbor

Workshop "Roberto Tempo" on Uncertain Dynamical Systems Banyuls sur mer July 7, 2017

Research partly funded by







Petter Nilsson



Johanna Mathieu

## Contents 🕲

- What is in this talk?
  - Multi-agent systems
  - Positive systems
  - Switched systems
  - Optimization (relaxations)
  - "Uncertainty"
  - Graph theory
- What is not in this talk?
  - Stability
  - Frequency domain

#### **Motivation and applications**

SMART GRID

- Large-scale, complex, distributed sensing, actuation and control systems:
  - Smart grid, Smart buildings, Aircraft systems, Automotive, Robotics, Manufacturing & Automation, Security & Surveillance

#### **Observations:**

- A very large number of (discrete & continuous) states and decision variables
- Complex requirements → need controllers too complex to be designed/analyzed b
   Scalable to designed/analyzed b

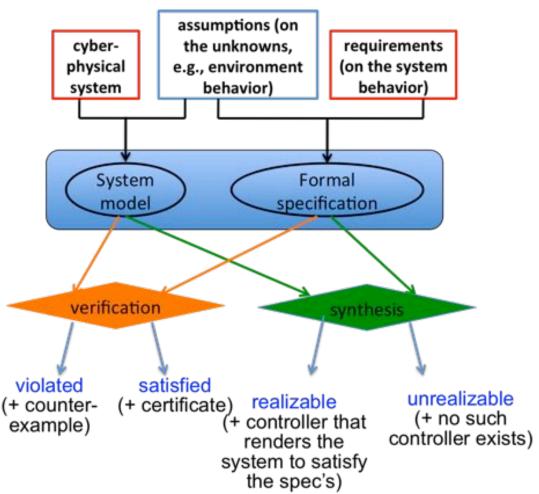
Scalable tools for data analysis, control design and verification (theory and software) are lagging!!!



### Formal methods in control

- Models for:
- the system (usually hybrid/ switched ODEs, with continuous/ discrete inputs, disturbances and parametric uncertainty)
- the environment (faults, external events)
- Formalized assumptions and requirements
- linear temporal logic and its extensions
- Methods for verification and synthesis
- algorithms that can process formal models and requirements to do analysis and control synthesis

#### Model-based approach



### System models

Differential equations (continuous-time):

$$\dot{x} = f(x, u_c, u_d, \epsilon_c, e)$$

Or, difference equations (discrete-time):

 $x(k+1) = f(x(k), u_c(k), u_d(k), \epsilon_c(k), e(k))$ 

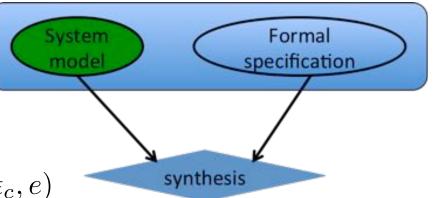
 $x \in \mathcal{X}$ : state  $u_c \in \mathcal{U}_c$ : continuous control input  $u_d \in \mathcal{U}_d$ : discrete control input

 $\epsilon_c \in \mathcal{D}_c$ : disturbance input

 $e \in \mathcal{D}_d$ : discrete uncontrollable input

#### Some characteristics:

- Hard constraints (on input and states)
- Infinite horizon specifications
- Hybrid (either the system or the controller or both)
- Robust/reactive



 $\mathcal{X} \subset \mathbb{R}^N$ 

# State-of-the-art in formal methods in control (incomplete list!)

- Hard state/input constraints, hybrid dynamics, complex specifications (e.g., temporal logics)
  - Belta, Fainekos, Girard, Murray, Pappas, Tabuada, Tomlin ...
- Applications (with "small" state-space dim.)
  - Robotics, building thermal management, adaptive cruise control, aircraft subsystems, traffic control
- "Medium"-scale systems
  - Monotonicity (Hafner & Del Vecchio 11, Coogan & Arcak 15)
  - Multi-scale abstractions for safety (Girard et al. 13)
  - Compositional synthesis (Nilsson & Ozay, Chen et al., Kim et al.), incremental abstractions (Nilsson & Ozay)

# State-of-the-art in formal methods in control (incomplete list!)

- Hard state/input constraints, hybrid dynamics, complex specifications (e.g., temporal logics)
  - Belta, Fainekos, Girard, Murray, Pappas, Tabuada, Tomlin ...
- Applications (with "small" state-space dim.)
  - Robotics, building thermal management, adapt aircraft subsystems, traffic control
- "Medium"-scale systems
  - Monotonicity (Hafner & Del Vecchio 11, Coogan & Arcak 15)
  - Multi-scale abstractions for safety (Girard et al. 13)
  - Compositional synthesis (Nilsson & Ozay, Chen et al., Kim et al.), incremental abstractions (Nilsson & Ozay)
- "Large"-scale (but not synthesis)
  - Parametric verification of rectangular hybrid automata (Johnson & Mitra 12)
  - Abstractions of large collections of stochastic systems (Soudjani & Abate 15)

Recurring theme:

structural properties

## Large collections of systems

Example 1: Emergency response with a robotic



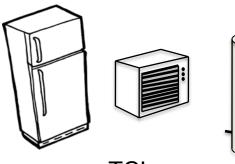
Creative commons public license

swarm

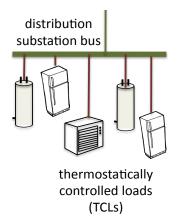
- Deploy a large collection of robots (e.g., quadrotors, ground vehicles) for search and rescue mission
- Plan trajectories by taking dynamic constraints into account
- Requirements:
  - <u>Sufficiently many</u> robots in certain areas at any given time
  - <u>Not too many</u> robots in certain regions (danger zones)
  - Collision avoidance
  - Charging/reporting constraints

## Large collections of systems

## Example 2: Coordination of thermostatically controlled loads (TCLs)



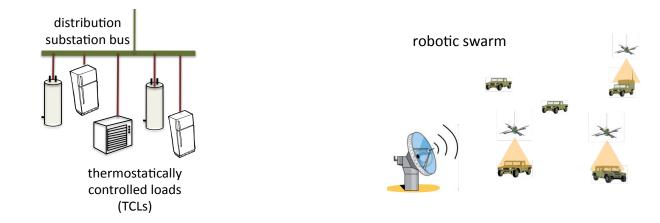
TCLs



- Thermostatically controlled loads (e.g., refrigerators, air conditioners, water heaters) for demand response
- Thermal dynamics can be controlled via ON/OFF switches
- Requirements:
  - <u>Not too many</u> TCLs ON at the same time (to avoid line overload)
  - <u>Sufficiently many</u> ON all the time (to utilize renewable energy)
  - Local temperature constraints (never out of desired temperature range)

Mathieu, Koch, Callaway, IEEE Trans. on Power Systems

### **Common structural properties**



- Large number of systems, small number of classes
- Counting constraints: "how many in each mode?", "how many in what region?"
- Identity of individual systems is not important

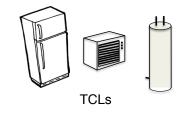
For simplicity, assume:

- dynamics are identical within each class
- (wlog) there is only one class

#### **Mathematical formulation: TCLs**

The temperature  $\theta$  of a TCL has dynamics

$$\dot{\theta}_i = \begin{cases} f_{on}(\theta_i), & \text{ if TCL is on} \\ f_{off}(\theta_i), & \text{ if TCL is off} \end{cases}$$



Suppose we have a collection of TCL's  $\{\theta_i\}_{i \in [N]}$ .

• Customers: Want TCL temperature to be close to a desired temperature  $\theta_i^{des}$ , but small deviations are allowed.

$$\|\theta_i - \theta_i^{des}\| \le \Delta \tag{1}$$

• Utility company: Wants to control aggregate demand, i.e. the number of TCLs that are on

$$\sum_{i=1}^{N} \mathbb{1}_{\{\text{TCL } i \text{ is on}\}}$$
(2)

Goal: Find a switching (i.e., on/off) strategy that exploits the flexibility in (1) so that (2) can be controlled.

#### **Mathematical formulation: General**

• N identical switched system with M modes:

$$\dot{x}_i(t) = f_{\sigma_i(t)}(x_i(t)), \quad \sigma_i : \mathbb{R} \mapsto [M],$$

- Mode-specific unsafe sets:  $\mathcal{U}_m$ ,  $m \in [M]$ 
  - Equivalent to forced mode switches.
- Mode-counting bounds:

$$\underline{K}_m \le \sum_{i=1}^N \mathbb{1}_m(\sigma_i(t)) \le \overline{K}_m \tag{3}$$

Want to synthesize a switching strategy  $\sigma_i$  such that (3) satisfied over time.

Structural property: both the dynamics and the specification (counting constraints) are permutation invariant!

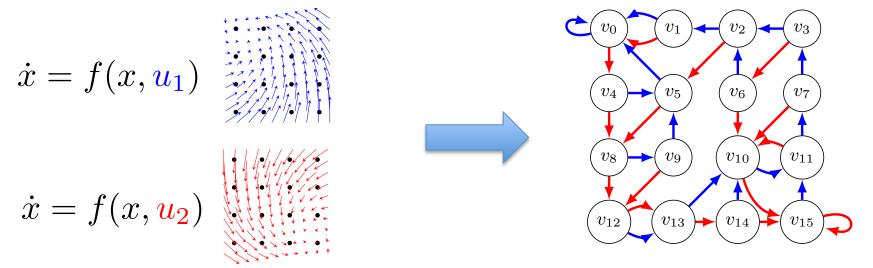
#### **Solution overview**

- Construct symbolic abstractions (i.e., a finite transition system) and aggregate dynamics and define "equivalent" problems on these structures
- (Analyze abstractions to understand fundamental limitations if any)
- An optimization-based solution approach
- Analysis of the solution approach

#### **Solution overview**

• Construct symbolic abstractions (i.e., a finite transition system)

 $-\epsilon$ -approximate bisimilar abstraction



 for each path on the finite transition system, there is a piecewise constant input that generates a trajectory such that time-sampled trajectory remains ε-close to the discrete states

14

• Assume dynamics are  $\delta$ -GAS with  $\mathcal{KL}$  functions  $\beta_m$ 

$$\|\phi_t^m(x) - \phi_t^m(y)\|_{\infty} \le \beta_m \left(\|x - y\|_{\infty}, t\right).$$
(4)

• Assume dynamics are  $\delta$ -GAS with  $\mathcal{KL}$  functions  $\beta_m$ 

$$\|\phi_t^m(x) - \phi_t^m(y)\|_{\infty} \le \beta_m \left(\|x - y\|_{\infty}, t\right).$$
 (4)

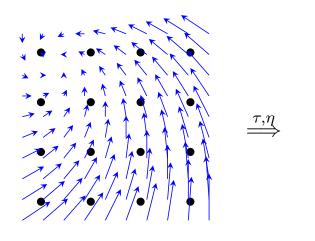
• With discretization in time  $(\tau)$  and space  $(\eta)$ , an  $\epsilon$ -approximate bisimilar model is obtained if  $\beta_m(\epsilon, \tau) + \frac{\eta}{2} \leq \epsilon$ .

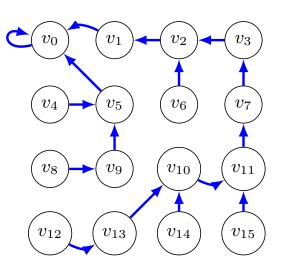
• Assume dynamics are  $\delta$ -GAS with  $\mathcal{KL}$  functions  $\beta_m$ 

$$\|\phi_t^m(x) - \phi_t^m(y)\|_{\infty} \le \beta_m \left(\|x - y\|_{\infty}, t\right).$$
(4)

• With discretization in time ( $\tau$ ) and space ( $\eta$ ), an  $\epsilon$ -approximate bisimilar model is obtained if  $\beta_m(\epsilon, \tau) + \frac{\eta}{2} \leq \epsilon$ .

• Mode 1 abstraction



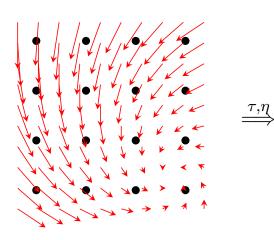


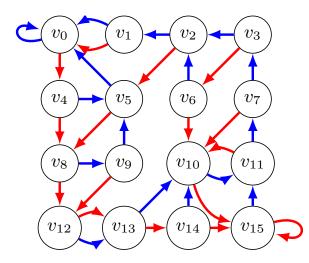
• Assume dynamics are  $\delta$ -GAS with  $\mathcal{KL}$  functions  $\beta_m$ 

$$\|\phi_t^m(x) - \phi_t^m(y)\|_{\infty} \le \beta_m \left(\|x - y\|_{\infty}, t\right).$$
(4)

• With discretization in time  $(\tau)$  and space  $(\eta)$ , an  $\epsilon$ -approximate bisimilar model is obtained if  $\beta_m(\epsilon, \tau) + \frac{\eta}{2} \leq \epsilon$ .

Mode 2 abstraction



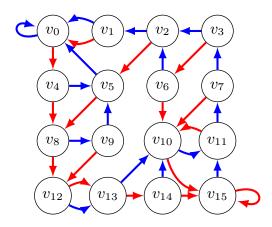


mode-transition graph G = (V, E)

#### **Some observations**

- For a homogeneous collection, each system will have an identical mode-transition graph
- Transition graphs are deterministic

mode-transition graph G = (V, E)



#### Some observations

- For a homogeneous collection, each system will have an identical mode-transition graph
- Transition graphs are deterministic
- Consider mild heterogeneity

$$\dot{x}_i(t) = f_{\sigma_i(t)}(x_i(t), d_i(t)), \quad \sigma_i : \mathbb{R} \mapsto [M]$$

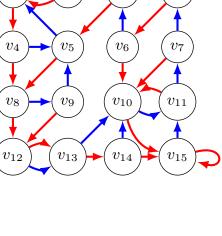
where  $d_i \in \mathcal{D}$  (bounded parametric uncertainty or disturbance). If  $f_m(x, d)$  is  $L_m$ -Lipschitz in x, and

$$||f_m(x,d) - f_m(x,0)|| \le \delta_m \text{ for all } d_i \in \mathcal{D},$$

then, with discretization in time  $(\tau)$  and space  $(\eta)$ , an  $\epsilon$ -approximate bisimilar model is obtained if  $\beta_m(\epsilon, \tau) + \frac{\delta_m}{L_m}(e^{L_m\tau} - 1) + \frac{\eta}{2} \leq \epsilon.$ 

mode-transition graph G = (V, E)

 $v_1$ 



#### Aggregate dynamics on graph

Let  $V = \{v_1, \dots, v_K\}$  denote the nodes of mode-transition graph G = (V, E). Introduce the states  $w_k^{m_1}$  and  $r_k^{m_1, m_2}$ .

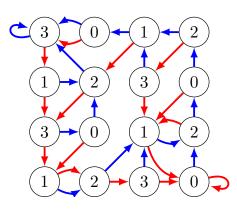
- $w_i^m$  represents number of systems in mode m at  $v_k$ .
- $r_k^{m_1,m_2}$  represents number of systems at  $v_k$  that switch from  $m_1$  to  $m_2$ .
- The dynamics become

$$(w_k^{m_1})^+ = \sum_{j \in \mathcal{N}_k^{m_1}} \left( w_j^{m_1} + \sum_{m_2} r_j^{m_2, m_1} - r_j^{m_1, m_2} \right),$$

• Constrained control actions:

$$0 \le \sum_{m_2} r_k^{m_1, m_2} \le w_k^{m_1},$$

• Compact description:  $\mathbf{w}^+ = A\mathbf{w} + B\mathbf{r}$ 



Nilsson, Ozay, HSCC 16, arxiv 17

## Equivalent problem on aggregate dynamics

#### **Theorem 1:**

Consider aggregate dynamics  $\Sigma_G : \mathbf{w}^+ = A\mathbf{w} + B\mathbf{r}$  with safety and mode-counting constraints:

$$w_k^m(t) = 0 \quad \forall k \in U_m,$$

$$\underline{K}_m \le \sum_{i \in [N]} w_i^m(t) \le \overline{K}_m.$$
(5)
(6)

Then,

- if ∃ sequence of control inputs r<sup>ω</sup> for Σ<sub>G</sub> that enforce (5) and
   (6) with U<sub>m</sub> + B<sub>ε</sub>, then ∃ a solution to the original problem.
- if ∄ a sequence of control input r<sup>ω</sup> for Σ<sub>G</sub> that enforces (5) and (6) with U<sub>m</sub> − B<sub>ε</sub>, then no solution to the original problem.

We will focus on aggregate dynamics. We need infinite horizon strategies!

**Solution strategy:** from a given initial state, steer the system, while respecting the constraints, to a **nice state** from which a periodic input suffices.

#### **Controllability-like conditions**

**Solution strategy: from** a given **initial state**, **steer the system**, while respecting the constraints, **to** a **nice state** from which a periodic input suffices.

- Let's put the mode-counting constraints aside.
- Are there any fundamental limitations on what states can be reached from an initial condition?

$$\Sigma_G: \mathbf{w}^+ = A\mathbf{w} + B\mathbf{r}$$

with local safety and input constraints

#### **Controllability-like conditions**

Solution strategy: from a given initial state, steer the system, while respecting the constraints, to a **nice state** from which a periodic input suffices.  $\Sigma_G : \mathbf{w}^+ = A\mathbf{w} + B\mathbf{r}$ 

• Let's put the mode-counting constraints aside.

with local safety and input constraints

 Are there any fundamental limitations on what states can be reached from an initial condition?

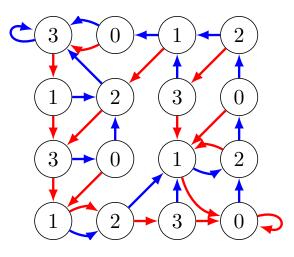
**Definition:** The period n of a strongly connected graph is the greatest common divisor of the lengths of its cycles.

**Theorem 2:** If the connected components of mode-transition graph has period n=1, any state is reachable from any other state (within the connected component). If n>1, then the reachable states live on a hyperplane arrangement with n hyperplanes.

#### **Solution strategy**

**Solution strategy:** from a given initial state, steer the system, while respecting the constraints, to a **nice state** from which a periodic input suffices.

- **Prefix:** for a fixed horizon T, given initial state, we will steer the state at time T to "**nice**" cycles
- **Suffix:** let individual systems circulate in the cycles

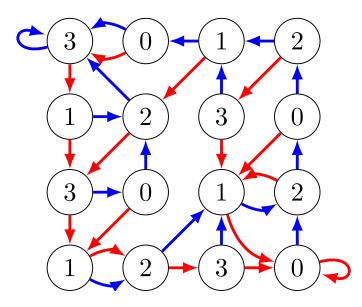


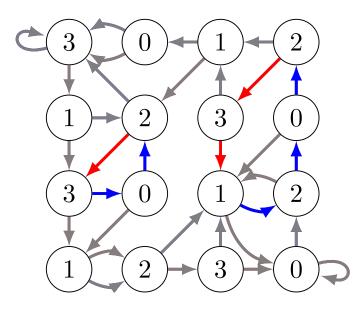
### **Cycle terminology**

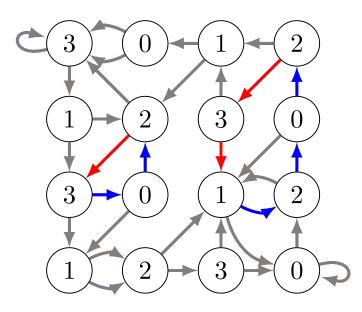
- Cycle  $C = \{v_{c_1}, \dots, v_{c_{|C|}}\}$  in G
- A cycle assignment for C is a function  $\alpha : C \mapsto \mathbb{R}^+$ .

Mode-counts on for a cycle assignment:

- Max-count Ψ<sup>m</sup>(C, α): maximal number of individual systems simultaneously in mode m when circulating α in C:
- Min-count  $\underline{\Psi}^m(C, \alpha)$ : minimal number of individual systems simultaneously in mode m when circulating  $\alpha$  in C:

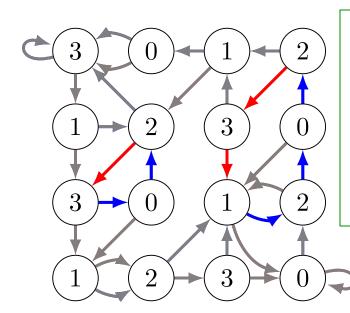






• Big cycle  $C_1$ , assignment  $\alpha_1 = [1, 2, 0, 2, 3]$ , gives red counts

$$\underline{\Psi}(C_1, \alpha_1) = 2, \quad \Psi(C_1, \alpha_1) = 5$$



Mode-counting constraints  $\underline{\Psi}^{m}(C, \alpha) \geq \underline{K}_{m}, \ \overline{\Psi}^{m}(C, \alpha) \leq \overline{K}_{m},$ can be represented as linear constraints  $\underline{K}_{m}\mathbf{1} \leq Y_{C}^{m}\alpha \leq \overline{K}_{m}\mathbf{1}$ 

 $Y_c^m$  is a circulant matrix.

• Big cycle  $C_1$ , assignment  $\alpha_1 = [1, 2, 0, 2, 3]$ , gives red counts

$$\underline{\Psi}(C_1, \alpha_1) = 2, \quad \overline{\Psi}(C_1, \alpha_1) = 5$$

• Small cycle  $C_2$ , assignment  $\alpha_2 = [3, 0, 2]$ , gives red counts

$$\underline{\Psi}(C_2, \alpha_2) = 0, \quad \overline{\Psi}(C_2, \alpha_2) = 3$$

#### **Solution via linear programming**

For cycles  $C_1, \ldots, C_J$ , required mode-counts  $K_m$ , horizon T

find 
$$\alpha_1, \ldots, \alpha_J$$
 cycle assignments,  
 $\mathbf{r}(0), \ldots, \mathbf{r}(T-1),$   
 $\mathbf{w}(0), \ldots, \mathbf{w}(T),$   
s.t.  $K_r < \sum_{m} \frac{m^m(t) < \overline{K}_m}{1 + 2m^m(t)} < \frac{\overline{K}_m}{1 + 2m^m(t)} < \frac{1}{\overline{K}_m} < 0 \le t \le T = 1$  mode-counting during prefix  
Feasibility problem with linear constraints:  
• integrality constraints on the inputs  
(ILP)  
• relaxing integrality (LP)  
Number of constraints and variables are  
independent of the number of systems N!  
 $\mathbf{w}(t+1) = A\mathbf{w}(t) + B\mathbf{r}(t), \quad t = 0, \ldots, T-1,$   
 $\Lambda(\mathbf{w}(0)) = \lambda_0,$   
 $\sum_{m_2} r_j^{m_1,m_2} = w_j^{m_1}$  for all  $j \in \bigcup_{i \in U_{m_1}} \mathcal{N}_i^{m_1},$   
 $r_j^{m_2,m_1} = 0$  for all  $m_2 \in [M], j \in U_{m_1},$   
 $m_1$  local safety constraints

control constraints.

#### Analysis

- Integer solutions (ILP)
  - Completeness of prefix-suffix solutions: There exists a finite T and some maximal cycle length L such that ILP with all cycles with length less than L provides a complete solution to the original problem
  - From any feasible ILP solution, we can extract a solution to the original problem

#### • Non-integer solutions (LP):

- Enough to consider simple cycles
- Gives certificates for non-existence of solutions
- Rounding a non-integer solution:
  - A non-integer solution over the cycles can be rounded to an integer feasible solution with mode counting loss at most

$$\underline{\Psi}^{m}(C,\alpha_{int}) \leq \underline{\Psi}^{m}(C,\alpha_{avg}) + \frac{|C|}{4}$$

#### **Intuition behind cycles: TCLs**

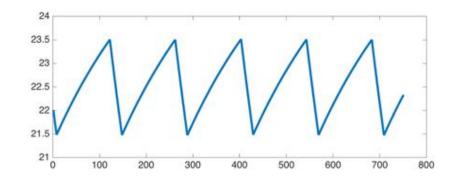
$$\dot{\theta}_i = -a(\theta_i - \theta_a) - bP_m$$

 $\theta$ :room temperature  $\theta_a$ :ambient temperature  $P_m = 0$  when OFF

 $P_m = 5.6$  when ON

local safety  $\theta_i \in [21.5, 23.5]$ 

For an individual system if only local ON/OFF control is used (no demand response for extra switching), the temperature evolves as follows:



#### **Intuition behind cycles: TCLs**

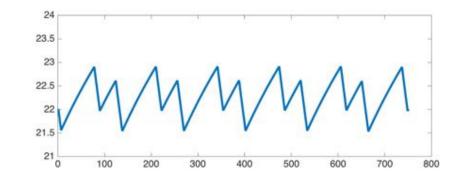
$$\dot{\theta}_i = -a(\theta_i - \theta_a) - bP_m$$

 $\theta$ :room temperature  $\theta_a$ :ambient temperature  $P_m = 0$  when OFF

 $P_m = 5.6$  when ON

local safety  $\theta_i \in [21.5, 23.5]$ 

For an individual system if only local ON/OFF control is used (no demand response for extra switching), the temperature evolves as follows:



Roughly, cycles are defining new "bands" within the dead-band allowed by the local safety constraints. That is, we are changing the duty cycle.

#### **Results on TCLs**

N = 10000 units

10000-D state-space with 2<sup>10000</sup> modes!

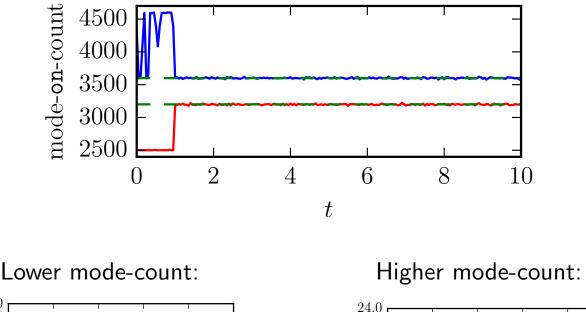
 $\dot{\theta}_i = -a(\theta_i - \theta_a) - bP_m$ 

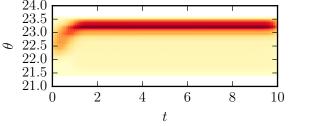
 $\theta$ :room temperature  $\theta_a$  : ambient temperature

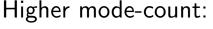
 $P_m = 0$  when OFF  $P_m = 5.6$  when ON

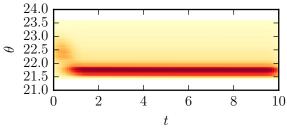
local safety  $\theta_i \in [21.5, 23.5]$ 

Two different runs with different mode-counting constraints (also stricter constraints at the suffix)





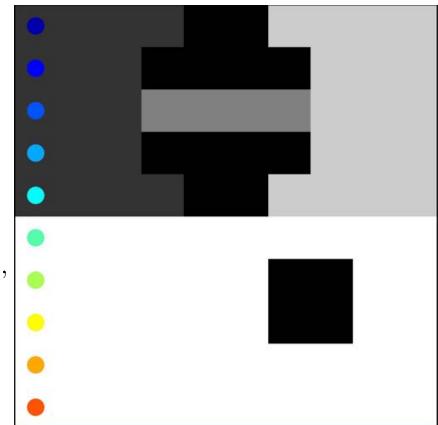




Parameters from Mathieu, Koch, Callaway, IEEE Trans. on Power Systems, 2013

#### **Beyond mode counting**

- Counting the agents in a region of state-space
- Time-evolution of counting constraints (counting LTL)
- $\varphi ::= True \mid cp \mid \varphi_1 \land \varphi_2 \mid \neg \varphi \mid \bigcirc \varphi \mid \varphi_1 \mathcal{U} \varphi_2,$ 
  - cp = [atom prop., count]
  - Possible to encode asynchrony as well



With Yunus Emre Sahin & Petter Nilsson ICCPS17

#### **Summary: structure for scalability**

- A control synthesis method for large collections of systems with counting constraints
  - exploits the symmetry (permutation invariance) in the dynamics and in specifications
  - works across scales (10 to 10K or more systems)
  - with potential applications in different domains
  - extensions to asynchrony, counting temporal logic

37

#### **Summary: structure for scalability**

- A control synthesis method for large collections of systems with counting constraints
  - exploits the symmetry (permutation invariance) in the dynamics and in specifications
  - works across scales (10 to 10K or more systems)
  - with potential applications in different domains
  - extensions to asynchrony, counting temporal logic
- Current work
  - partial information
  - non-deterministic abstractions (for not incrementally stable systems), asynchronous switching
  - tighter rounding bounds between LP and ILP
  - other types of symmetries that can be exploited

Preprints and more information available @ http://web.eecs.umich.edu/~necmiye/