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Introduction

■ This paper extends the classical Kalman decomposition to the case of linear quantum

systems.

■ This involves introducing a coordinate transformation (change of variables) such that

the transformed system is decomposed into four subsystems which represent different

controllability and observability properties of the system.

■ The transformed system is said to be in Kalman canonical form.

■ Contrary to the classical case, the coordinate transformation used for the

decomposition must belong to a specific class of transformations as a consequence of

the laws of quantum mechanics.

■ We propose a construction method for such transformations that put the system in a

Kalman canonical form.

■ Furthermore, we uncover an interesting structure for the obtained decomposition.
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■ The quantum Kalman decomposition naturally exposes decoherence-free modes,

quantum-nondemolition modes, quantum-mechanics-free subspaces, and back-action

evasion measurements in the quantum system, which are useful resources for

quantum information processing, and quantum measurements.

■ The theory developed is applied to physical examples.
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Linear quantum systems

■ A linear quantum system, is a collection of n quantum harmonic oscillators driven by

m input boson fields.

■ The mode of oscillator j, j = 1, . . . , n, is described in terms of its annihilation

operator aj , and its creation operator a∗
j , the adjoint operator of aj . These are

operators on an infinite-dimensional Hilbert space.

■ These operators satisfy the canonical commutation relations

[aj(t), ak(t)] = 0, [a∗
j (t), a

∗
k(t)] = 0, [aj(t), a

∗
k(t)] = δjk.
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■ The system Hamiltonian H is given by

H = (1/2)ă†Ωă,

where ă =

[

a

a#

]

, ă† = [a† a⊤], a =







a1

.

.

.

an






, a# =







a∗
1

.

.

.

a∗
n






,

a† = [a∗
1 · · · a∗

n] and Ω is a Hermitian matrix.

■ The coupling of the system to the input fields is described by the vector of operatora

L = [C− C+]ă, where C− and C+ are complex matrices.

■ The input field are described in terms of annihilation operators bk(t) and creation

operators b∗k(t) which also satisfy canonical commutation relations.
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■ The dynamics of the open linear quantum system is described by the following

quantum stochastic differential equations (QSDEs)

˙̆a(t) = A ă(t) + Bb̆(t),

b̆out(t) = C ă(t) + D b̆(t),

where

D = I, C =

[

C− C+

C#
+ C#

−

]

, B = −C
♭, and

A = −ıJnΩ−
1

2
C

♭
C .

■ Here

C
♭ = JC

†J, J = diag(I,−I), C
† = (C#)T .

■ This is the complex annihilation-creation representation of the linear quantum system.
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■ There is another useful representation for the above quantum linear systems which is

the real quadrature operator representation. It can be obtained from the

annihilation-creation operator representation through the following transformations:

[

q

p

]

≡ x , V ă,

[

qin

pin

]

≡ u , V b̆,

[

qout

pout

]

≡ y , V b̆out,

where V , 1√
2

[

I I
−ıI ıI

]

.

■ The operators qi and pi are called conjugate variables.

■ They satisfy the canonical commutation relations

[qj(t), qk(t)] = 0, [pj(t),pk(t)] = 0, and [qj(t),pk(t)] = ıδjk.
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■ The QSDEs that describe the dynamics of the linear quantum system in the real

quadrature operator representation are the following:

ẋ = Ax+Bu,

y = Cx+Du,

where

D = V DV † = I, C = V CV †, B = V BV † = −C♯,

A = V A V † = JH −
1

2
C♯C, X♯ , −JX†

J, J ,
[

0 I
−I 0

]

.

■ Here H , V ΩV † and the Hamiltonian can be written as H = (1/2)x⊤Hx.
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■ In the real quadrature representation the matrices A, B, C , D, and H are all real.

■ The only coordinate transformations xnew = Sx that preserve this structure are real

symplectic; i.e.,

JS† = S†
JS = J ⇔ SS♯ = S♯S = I.

■ Also, since S is symplectic, it preserves the commutation relations.

■ Also, it will be convenient to consider blockwise symplectic transformations; i.e.,

S⊤
JS =





J 0 0
0 J 0
0 0 J



 . (1)
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The Controllability and Observability Matrices

■ The controllability and observability matrices for the linear quantum system are

CG ,
[

B A B · · · A 2n−1B
]

,

OG ,











C

C A

.

.

.

C A 2n−1











.

■ These matrices arise in classical linear systems theory and are used to determine if a

given linear system has the property of Controllability or Observability.
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■ These notions play an important role in understanding the structure of classical linear

systems and we show that they also play an important role in understanding the

structure of quantum linear systems.

Controllable

Subsystem

Uncontrollable

Subsystem

Input
Output

+

An uncontrollable linear system

Input
Output

Observable

Subsystem

Unobservable

Subsystem

An unobservable linear system
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■ The controllability and observability matrices also define corresponding subspaces

which will be used in out quantum Kalman decomposition.

■ Im(CG) and Ker (OG) are the controllable and unobservable subspaces of the

space C2n.

■ We define the uncontrollable and observable subspaces to be their orthogonal

complements in C2n, that is Ker(C†
G), and Im(O†

G), respectively.
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Quantum Notions related to the Controllability and Observability

Subspaces

■ We now introduce some important notions from quantum information science and

quantum measurement theory which we will later show are naturally related to our

Kalman decomposition of linear quantum systems.

Definition 1 The linear span of the system variables related to the uncontrol-

lable/unobservable subspace (the intersection of the uncontrollable and unobservable sub-

spaces) of a linear quantum system is called its decoherence-free subsystem (DFS).

■ Decoherence-free subsystems for linear quantum systems have recently been studied

by a number of authors.
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■ A natural extension of the notion of a QND variable is the following concept introduced

by Tsang and Caves in 2012.

Definition 2 The span of a set of observables Fi, i = 1, . . . , r, is called a quantum

mechanics-free subsystem (QMFS) if

[Fi(t1), Fj(t2)] = 0

for all time instants t1, t2 ∈ R+, and i, j = 1, . . . , r.

■ We will show using our quantum Kalman decomposition that a QMFS corresponds to

the linear span of the system variables related to the uncontrollable/observable

subspace (the intersection of the uncontrollable and observable subspaces) of a linear

quantum system.
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The Kalman decomposition in the real quadrature representation

Theorem 1 There exists a real orthogonal and blockwise symplectic coordinate transforma-

tion









qh

ph

xco

xc̄ō









= S⊤x which after a re-arrangement transforms the linear quantum system

into the form








q̇h(t)
ẋco(t)
ẋc̄ō(t)
ṗh(t)









=









A11
h A12 A13 A12

h

0 Aco 0 A21

0 0 Ac̄ō A31

0 0 0 A22
h

















qh(t)
xco(t)
xc̄ō(t)
ph(t)









+









Bh

Bco

0
0









u(t),

y(t) = [0 Cco 0 Ch]









qh(t)
xco(t)
xc̄ō(t)
ph(t)









+ u(t).
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■ A block diagram of the corresponding Kalman decomposition is shown below.

■ qh,i, i = 1, . . . , n3, are controllable but unobservable, while ph,i, i = 1, . . . , n3,

are observable but uncontrollable.

■ We see that every cō variable must have an associated c̄o variable. That is, they

appear in conjugate pairs.

■ Again the proof of the above theorem gives a constructive method for obtaining the

required transformation matrix S.

Roberto Tempo Workshop Presentation ANU
CANBERRA



The Kalman Decomposition for Linear Quantum Systems 17

■ Notice that the variables ph,i evolve without any influence from the inputs or other

system variables. Then, the set of ph,i, i = 1, ..., n3, is a quantum mechanics free

subsystem (QMFSS).

■ This implies that each ph,i is a QND variable.

■ Moreover, the variables xc̄ō,i, i = 1, . . . , n2, are DF modes.
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Example 1

■ We now consider an using the real quadrature representation for which the

Hamiltonian and coupling operator are given by H = 2q1q2 and

L = 1√
2
(q1 + ıp1), respectively.

■ We find that the system variables in the real quadrature representation form of the

Kalman decomposition are given by qh = −p2, ph = q2, qco = q1, pco = p1.

■ Also, the corresponding QSDEs are as follows:

ṗ2(t) = −2q1(t),

q̇1(t) = −0.5q1(t)− qin(t),

ṗ1(t) = −0.5p1(t)− 2q2(t)− pin(t),

q̇2(t) = 0,

qout(t) = q1(t) + qin(t),

pout(t) = p1(t) + pin(t).
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■ A block diagram of this transformed system is given below:

Controllable and observable 

Subsystem

Uncontrollable and observable

Subsystem

controllable and unobservable

Subsystem

q

p

in

in

q
out

p
out

q
1

p
1

p
2

q
2
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■ For this example, we find the following features:

(i) p2 is controllable but unobservable, while q2 is observable but uncontrollable. So,

q2 is a quantum non-demolition (QND) variable.
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Applications

We now apply the Kalman decomposition theory developed to two physical systems.

Example 2

■ We investigate an opto-mechanical system, as shown below.

1
a

2
a

3
a

b

out
b
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■ The optical cavity has two optical modes, a1 and a2. The cavity is coupled to a

mechanical oscillator with mode a3, whose resonant frequency is ωm.

■ The coupling operator of the system is L =
√
κa3, where κ > 0.

■ The Hamiltonian of the system is given by

HR = ωm(a∗
1a1 + a∗

2a2 + a∗
3a3) +

λ1

2
(a1a

∗
3 + a∗

1a3) +
λ2

2
(a2a

∗
3 + a∗

2a3)

where λ1, λ2 > 0 are the opto-mechanical couplings.
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Red-detuned case

■ In this case, ∆1 = ∆2 = −ωm < 0.

■ The coordinate transformation

[

aDF

aD

]

=





ρ2a1 − ρ1a2

ρ1a1 + ρ2a2

a3



 ,

yields the following Kalman decomposition:

ȧDF (t) = −ıωmaDF (t),

ȧD(t) = −
[

ıωm ıλ
2

ıλ
2

κ
2
+ ıωm

]

aD(t)

−
[

0√
κ

]

b(t),

bout(t) =
[

0
√
κ
]

aD(t) + b(t)

where λ =
√

λ2
1 + λ2

2, ρ1 = λ1/λ, ρ2 = λ2/λ.
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■ A block diagram corresponding to this system is shown below.

a
DF

a
D

b bout
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■ Clearly, aDF is a DF mode.

■ It is a linear combination of the two cavity modes and is decoupled from the

mechanical mode, thus being immune from the mechanical damping. This mode is

been called “mechanically dark”.

■ In the real quadrature operator representation, the DF mode is

V1

[

aDF

a∗
DF

]

=

[

ρ2q1 − ρ1q2

ρ2p1 − ρ1p2

]

.
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Blue-detuned case

■ In this case, the detuning between the laser frequency and both cavity modes is

positive.

■ Moreover, we assume ∆1 = ∆2 = ωm > 0.

■ Under the rotating frame approximation a1(t) → a1(t)e
−ıωmt,

a2(t) → a2(t)e
−ıωmt, and a3(t) → a3(t)e

ıωmt, the Hamiltonian can be

approximated by

HB = λ1

a1a3 + a∗
1a

∗
3

2
+ λ2

a2a3 + a∗
2a

∗
3

2
−ωma∗

1a1 − ωma∗
2a2 + ωma∗

3a3.
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■ In this case, we find that there are no c̄o or cō subsystems.

■ By applying our quantum Kalman decomposition for the case of a real quadrature

representation, we obtain the transormed variables

xco =









q3

ρ1q1 + ρ2q2

p3

ρ1p1 + ρ2p2









, xc̄ō =

[

ρ2q1 − ρ1q2

ρ2p1 − ρ1p2

]

.

Roberto Tempo Workshop Presentation ANU
CANBERRA



The Kalman Decomposition for Linear Quantum Systems 28

■ Also, the transformed system in Kalman Canonical form is

ẋco(t) = Acoxco(t)−









√
κ 0
0 0
0

√
κ

0 0









[

qin(t)
pin(t)

]

,

ẋc̄ō(t) =

[

0 −ωm

ωm 0

]

xc̄ō(t),

[

qout(t)
pout(t)

]

=

[√
κ 0 0 0
0 0

√
κ 0

]

xco(t) +

[

qin(t)
pin(t)

]

,

where

Aco =









−κ 0 ωm −λ
2

0 0 −λ
2
−ωm

−ωm −λ
2

−κ 0
−λ

2
ωm 0 0









.

■ Clearly, xc̄ō is a DF mode. Indeed, it is exactly the same as that in the red-detuned

regime case.
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■ A block diagram corresponding to this system is shown below.

out

co

co

q

p

q

p
out

in

in
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Phase-shift regime

■ In this case, the two cavity modes are resonant with their respective driving lasers.

■ Moreover, ∆1 = ∆2 = 0.

■ By applying our quantum Kalman decomposition for the case of a real quadrature

representation, we obtain the transormed variables









qh(t)
ph(t)

xco(t)

xc̄ō(t)









=

















−ρ1p1 − ρ2p2

ρ1q1 + ρ2q2

q3

p3

ρ2q1 − ρ1q2

ρ2p1 − ρ1p2

















.
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■ Also, the transformed system in Kalman Canonical form is

[

q̇h(t)
ṗh(t)

]

=

[

λ 0
0 0

]

xco(t),

ẋco(t) =

[

−κ/2 ωm

−ωm −κ/2

]

xco(t)

−λ

[

0
ph(t)

]

−
√
κ

[

qin(t)
pin(t)

]

,

ẋc̄ō(t) = 0,
[

qout(t)
pout(t)

]

=
√
κxco(t) +

[

qin(t)
pin(t)

]

.
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■ A block diagram corresponding to this system is shown below.

q

p

in

in

q
out

p
out

p

q
h

x

co

h

x

co

- -
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■ Clearly, xc̄ō(t) is a DF mode (which is the same as in the red-shift and blue-shift

cases above.

■ However, ph(t) is a constant for all t ≥ 0, thus is a QND variable.

■ Actually, ph could be measured continuously with no quantum limit on the

predictability of these measurements as the measurement back-action only drives its

conjugate operator qh.
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Example 3

■ The opto-mechanical system, as shown below has been studied theoretically and

implemented experimentally using superconducting microwave circuits.

1
a 2

a

3
a

b

out
b
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■ Here, the two mechanical oscillators with modes a1 and a2, are not directly coupled.

■ Instead, they are coupled to a microwave cavity, with mode a3.

■ In this system, the mechanical damping is much smaller than the optical damping.

■ Therefore, in what follows we neglect the mechanical damping.
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■ The system Hamiltonian is as follows:

H = Ω(a∗
1a1 − a∗

2a2) + g(a1 + a∗
1)(a3 + a∗

3) + g(a2 + a∗
2)(a3 + a∗

3).

■ The optical coupling is L =
√
κa3.

■ By applying our quantum Kalman decomposition for the case of a real quadrature

representation, we obtain the transormed variables

[

qh

ph

]

=
1
√
2









q2 − q1

−p1 − p2

p2 − p1

q1 + q2









, xco =

[

q3

p3

]

.
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■ Also, the transformed system in Kalman Canonical form is

q̇h(t) =

[

0 Ω
−Ω 0

]

qh(t) +

[

0 0

2
√
2g 0

]

xco(t),

ẋco(t) = −
κ

2
xco(t)−

[

0 0

0 2
√
2g

]

ph(t)−
√
κ

[

qin(t)
pin(t)

]

,

ṗh(t) =

[

0 Ω
−Ω 0

]

ph(t),

[

qout(t)
pout(t)

]

=
√
κxco(t) +

[

qin(t)
pin(t)

]

.
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■ A block diagram corresponding to this system is shown below.

q

p

in

in

q
out

p
out

p

q

�

�

co1

�

p

� �

�

co2
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■ The components of ph are linear combinations of variables of the two mechanical

oscillators, are immune from optical damping, and form a QMFS.

■ Moreover, the second entry of ph, can be measured via a measurement on the optical

cavity, and the back-action will only affect the dynamics of the mechanical quadratures

in qh, which are conjugate to those in ph.

■ It can be readily shown that the system realizes a BAE measurement of qout with

respect to pin, and a BAE measurement of pout with respect to qin.

■ Finally, notice that
q
1
+q

2√
2

, the second entry of ph, couples to the microwave cavity

dynamics xco.
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Conclusions

■ In this paper, we have studied the Kalman decomposition for linear quantum systems.

■ We have shown that it can always be performed with an orthogonal symplectic

coordinate transformation in the real quadrature representation. These are the only

coordinate transformations allowed by quantum mechanics to preserve the physical

realizability conditions for linear quantum systems.

■ Because the coordinate transformations are orthogonal, they can be performed in a

numerically stable way.

■ Furthermore, the decomposition is performed in a constructive way, as in the classical

case.

■ The Kalman canonical decomposition naturally exposes the system’s decoherence-free

modes, quantum-nondemolition variables, quantum-mechanics-free-subspaces, which

are important resources in quantum information science.
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