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Objective

Given a class of uncertain linear plant and stabilizing controller,
design of event-triggered rules to stabilize the closed-loop system.
[Postoyan et al., 2015, Tallapragada and Chopra, 2012]

The event-triggering rule depends only on local information,
that is it uses only the output signals available to the
controller [Tarbouriech et al., 2016],
[Abdelrahim et al., 2014].

The approach proposed combines a hybrid framework
[Goebel et al., 2012] to describe the closed-loop system with
looped functionals based techniques
[Seuret, 2012, Briat and Seuret, 2012].
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Problems

(1) How to design flow and jump conditions, defining the
event-triggering rule, so that the obtained hybrid system is globally
asymptotically stable? (2) What about the inter-event time? (3)
Can we compute a maximal sampling period T?

 

This problem corresponds to an emulation problem
[Heemels et al., 2012, Wang and Lemmon, 2008,
Postoyan et al., 2011, Tallapragada and Chopra, 2012].
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Consider a linear system fed by an output feedback
sampled-data control given by the hybrid dynamical system

ẋ = Ax + Bu,
u̇ = 0,
σ̇ ∈ gT (σ),

(x , u, σ) ∈ C,


x+ = x ,
u+ = KCx ,
σ+ = 0,

(x , u, σ) ∈ D,

(1)

where
B x ∈ Rn represents the state of the system
B u ∈ Rm represents the zero order holder of the system input

since the last sampling time.

The output of the system y is given by

y = Cx ∈ Rp. (2)
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Remarks

Such a system (1)-(2) can appear when connecting, for
instance, a linear continuous plant with a dynamic output
feedback controller.

B Matrices A,B,C characterize the system dynamics and matrix
K corresponds to the controller gain.

Uncertainties. While C is assumed to be constant and known,
let us assume that matrices A and B are constant but
uncertain, such that

[A B] ∈ Co{ [Ai Bi ] }i∈I , (3)

for some constant and known matrices Ai and Bi , for i ∈ I
where I is a bounded subspace of N.
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Remarks

Timer σ ∈ [0, 2T ] flows by keeping track of the elapsed time
since the last sample (where it was reset to zero) according to
the following set-valued dynamics:

gT (σ) :=

{
1 σ ≤ 2T
[0, 1] σ = 2T ,

(4)

B whenever σ < 2T , its value exactly represents the elapsed time
since the last sample,

B moreover σ ∈ [T , 2T ] implies that at least T seconds have
elapsed since the last sample.
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Problem

Given an uncertain linear plant and a hybrid controller defined by
matrices Ai ,Bi for i ∈ I and K ,C . Design an event-triggering
rule, with a prescribed dwell-time T

B That is the flow set C, the jump set D and T

that makes the closed-loop system (1)-(4) globally asymptotically
stable to a compact set wherein x = 0 and u = 0.

The role of the flow and jump sets C and D is to rule when a
sampling should happen, based on the available signals to the
controller, namely output y = Cx , the last sampled input u
and timer σ.
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We select the following sets C and D:

C := F ∪ {σ ∈ [0,T ]} (5a)

D := J ∩ {σ ∈ [T , 2T ]}, (5b)

where sets F and J are selected as

F :=

{
(x , u) :

[
y

s − Ky

]>
M

[
y

s − Ky

]
≤ 0

}
, (5c)

J :=

{
(x , u) :

[
y

s − Ky

]>
M

[
y

s − Ky

]
≥ 0

}
, (5d)

Matrix M =
[

M1 M2

M>2 M3

]
∈ R(p+m)×(p+m) has to be designed.

The considered event-triggered problem is parametrized by M
and T .
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Remarks

The jump set selection in (5b) ensures that all solutions
satisfy a dwell-time constraint corresponding to T .

B Indeed, jumps are inhibited unless timer σ ≥ T , which implies
that at least T ordinary time elapses between each pair of
consecutive sampling times.

Selecting M2 = 0 leads to the definition of the flow and jump
sets usually employed in the literature, issued from an
Input-to-State (or Input-to-Output) analysis. See
[Postoyan and Girard, 2015] for more details.
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Lyapunov function

The proof of our theorems is based on the use of a
non-smooth Lyapunov function and LaSalle principle.

In particular, we use the following function:1

V (x , u, σ) :=e−ρmin{σ,T}
∣∣∣∣Λ(T−min{σ,T})

[
x
u

]∣∣∣∣2
P︸ ︷︷ ︸

=:V0(x ,u,σ)

+ η|u|2︸ ︷︷ ︸
=:Vu(u)

,

(6)
with Λ given by

Λ(A,B,T ) :=
[
I 0

]
e

[
A B
0 0

]
T ∈ Rn×2n. (7)

and where ρ and η are sufficiently small positive scalars to be
selected.

1Here we use the standard notation |z |2P := z>Pz .
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LMI-based design of M: nominal case

Theorem 1 (matrices A,B are constant and known)

Assume that there exist matrices P ∈ Sn, M =
[

M1 M2

M>
2 M3

]
∈ Sp+m

satisfying

ΨM(A,B) :=

[
He(PAcl)−C>M1C PB−C>M2

B>P −M>2 C −M3

]
< 0,

Φ(A,B,T ) :=

(
Λ(A,B,T )

[
I

KC

])>
PΛ(A,B,T )

[
I

KC

]
− P < 0,

(8)

with Acl := A + BKC and Λ(A,B,T ) defined in (7). Then the compact
attractor

A := {(x , u, σ) : x = 0, u = 0, σ ∈ [0, 2T ]}, (9)

is GAS for the nominal closed-loop dynamics (1), (5).
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Remarks

The LMI conditions can be interpreted as follows

B The condition ΨM(A,B) < 0 imposes that the Lyapunov
function V in (6) is decreasing while flowing with σ ≥ T
(which requires (x , u) ∈ F).

B The condition Φ(A,B,T ) < 0 guarantees that the Lyapunov
function V in (6) is non-increasing while flowing and when
σ < T .

B The condition Φ(A,B,T ) < 0 can be interpreted as an
asymptotic stability criterion for system (1) when the control
updates are performed periodically with a period T , which
motivates the union and intersection in (5a) and (5b).

B The dwell time T appears as a parameter for the design of
event trigger algorithm.
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LMI-based design of M: uncertain case

When matrices A, B and parameter T are known and
constant, inequality Φ(A,B,T ) < 0 can be easily
implemented and verified.

When matrices A and B are uncertain, verifying inequality
Φ(A,B,T ) < 0 for any pair (A,B) in (3) becomes a difficult
nonlinear problem.

B Now we propose a method to deal with uncertain matrices A
and B based from [Seuret, 2012, Thm 1] and recent
developments arising from stability analysis of persistent
sampled-data systems [Hetel et al., 2017].
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LMI-based design of M: uncertain case

Theorem 2 (uncertain case)

Assume that there exist matrices P ∈ Sn, M :=
[

M1 M2

M>
2 M3

]
∈ Sp+m, and

matrices Z ∈ Sn+, Q,U ∈ Sn, R ∈ Rn×n and Yi ∈ R2n×n, i = 1, . . . ,m
satisfying conditions ΨM(Ai ,Bi ) < 0, given in (8) and

Θ1(Ai ,Bi ,T ) := F0(Ai ,Bi ,T ) + TF1(Ai ,Bi ) < 0,

Θ2(Ai ,Bi ,T ) :=

[
F0(Ai ,Bi ,T ) TYi

? −TZ

]
< 0,

(10)

hold for all i = 1, . . . ,m with

F0(Ai ,Bi ,T ) := THe{e>0i Pe1 −Yie12−e>12Re2} − e>12Qe12 − e>2 TXe2,
F1(Ai ,Bi ) := He[e>0iQe12 +e>0iRe2] + e>0i Ze0i + 2e>2 Xe2,

and e0i :=
[
Ai BiKC

]
, e1 :=

[
In 0

]
, e2 :=

[
0 In

]
, e12 :=

[
In −In

]
.

Then the compact attractor A in (9) is GAS for the uncertain closed-loop
dynamics (1)-(4), (5).
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Sketch of the proof

One shows that function V in (6) is a non-strict Lyapunov function for
the nominal and uncertain closed loops.

V (x , u, σ) :=e−ρmin{σ,T}
∣∣∣∣Λ(T−min{σ,T})

[
x
u

]∣∣∣∣2
P︸ ︷︷ ︸

=:V0(x,u,σ)

+ η|u|2︸ ︷︷ ︸
=:Vu(u)

,

Along flowing solutions we obtain:

V̇ (ξ) ≤ −ε
∣∣∣∣[ x
u − Ky

]∣∣∣∣2 , if (x , u) ∈ F , σ ≥ T . (11)

For all ξ ∈ D,

V+(ξ) = e−ρT V0(ξ) ≤ e−ρT V (ξ) (12)

which proves the strict decrease of the Lyapunov function, across any
jump outside A.

No “bad” complete solution exists, which keeps V constant and nonzero.
If any such “bad” complete solution exists, then it has to start outside A
and it cannot jump because otherwise from (12).
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Sketch of the proof

We propose an extension of La Salle’s invariance principle based on
the invariance principle in [Sanfelice et al., 2007] and
[Goebel et al., 2012, Ch. 8] and some observations (already made in
[Goebel et al., 2009]).

B There is no need to check the flow and jump conditions in the
attractor, that the flow condition only needs to be checked in
the directions of the tangent cone to the flow set (as already
established in [Sanfelice et al., 2007, Thm. 4.7]),

B Nonsmooth Lyapunov functions V only need to be locally
Lipschitz in the flow set and continuous in the jump set, and
then rely on Clarke’s generalized gradient [Clarke, 1990] for
dealing with flowing solutions.
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Optimization

A natural optimization procedure consists in the minimization of the
effect of the off-diagonal term PBi − C>M2.

B This optimization can be performed by minimizing M3.

This optimization problem is an LMI optimization as follows

min
P,M

Tr(M3), subject to: P > I , M1 < 0,

ΨM(Ai ,Bi ) < 0,
Θj(Ai ,Bi ,T ) < 0, j = 1, 2,

∀i ∈ I.
(13)

P > I has been imposed for well conditioning the LMI constraints.

M1 < 0 has been included in order to obtain He(PAcli ) < 0 in (8),
which avoids exponentially unstable continuous dynamics, thereby
giving more graceful inter-sample transients.

Minimizing Tr(M3), increases the negativity of M3 and leads to
larger flow sets ( (5)). Since the jump set is the closed complement
of the flow set, it is expected that solutions will flow longer and
jump less in light of larger flow sets.
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Data

The plant
[Donkers and Heemels, 2012, Abdelrahim et al., 2014] is{

ẋp = Ap(ω)xp + Bp(ω)up,
yp = Cpxp,

(14)

B with matrices

Ap(ω) :=

[
0 1
−2 3 + ω

]
, Bp(ω) :=

[
0

1 + 0.1ω

]
, C>p :=

[
−1
4

]
B ω ∈ Ω := [−ω0, ω0] represents a constant uncertainty affecting

the system for some positive constant ω0.

The dynamic output feedback controller is{
ẋc = Acxc + Bcyp,
up = Ccxc + Dcyp,

(15)

with
Ac :=

[
1.0919 −1.1422
4.9734 −6.1425

]
, Bc :=

[
16.7501
64.6472

]
,

Cc :=
[

0.1157 −0.0928
]
, Dc := 0.
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Closed loop

Denote

x :=

[
xp
xc

]
The whole dynamics described by (14) and (15) can be
reformulated as system (1) with

[
A(ω) B(ω)

K C

]
∈



Ap(ω) 0 Bp(ω) 0

0 Ac 0 Bc

Dc Cc Cp 0
I 0 0 I

, ω ∈ Ω

 .

(16)
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Nominal case

ω0 = 0

in [Abdelrahim et al., 2014] a dwell-time T = 0.0114s is
obtained.

With our approach solutions to the conditions of Theorem 1
one obtaints T up to 0.11s, which is ten times larger than the
solution provided in [Abdelrahim et al., 2014].

B This demonstrates the potential of the proposed method.
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Nominal case
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Nu = 434 Nu = 255 Nu = 165

Simulations obtained for T = 0.02, 0.05 and 0.10s and where
matrix M results from the optimization problem (13), with
xp0 = [10 − 5]>, xc0 = [0 0]> and σ = 0.

Classical trade-off between the number of control updates and
the performance of the closed-loop system.
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Uncertain case

ω0 6= 0

ω0 0 0.04 0.08 0.12 0.139

Th.1 0.114 − − − −
Th.2 0.112 0.100 0.070 0.028 0.008

Table: Maximal dwell time Tmax leading to feasibility of the conditions in
Theorems 1 and 2 for several values of ω0.

Evolution of Nu w.r.t T for
several values of ω0.

The vertical dotted lines
represent the limit values of
the T for which the
conditions of Theorem 2 are
feasible for ω0 = 0.1 (left),
ω0 = 0.075 (middle) and
ω0 = 0.05 (right). T
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We provided a way to design the event-triggered rules for
uncertain linear systems controlled by means of a dynamic
output feedback controller.

A nonstrict and nonsmooth Lyapunov functions has been used.

Numerically tractable conditions allow to guarantee an
adjustable dwell time of the solutions.

Future work. Address the co-design problem: to
simultaneously design the feedback stabilizer and its
event-triggered sampled data implementation.
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